Data 102: Data, Inference, and Decisions

UC Berkeley, Fall 2024

Alexander Strang

Alexander StrangInstructor

alexstrang

Ramesh Sridharan

Ramesh SridharanInstructor

ramesh_s

Schedule

Jump to current week

Aug 29
Lecture 1. Binary Decision-Making I
Vitamin Vitamin 1 (due Sep 4 at 11:59 PM)

Sep 2
Lab Lab 1: Review and Warm-Up (due Sep 4 at 5 PM)
Sep 3
Lecture 2. Binary Decision-Making II
Discussion Discussion 1 (Answers)
Sep 5
Lecture 3. Binary Decision-Making III: Hypothesis Testing
Vitamin Vitamin 2 (due Sep 8 at 11:59 PM)
Sept 6
Homework Homework 1 (due Sept 20 at 5 PM)

Sep 17
Lecture 6. Introduction to Frequentist and Bayesian Modeling
Sep 19
Lecture 7. Bayesian Hierarchical Models

Sep 24
Lecture 8. Bayesian Inference with Sampling
Sep 26
Lecture 9. Rejection Sampling and Gibbs Sampling

Oct 1
Lecture 10. Regression and GLMs
Oct 3
Lecture 11. Model Checking for GLMs

Oct 8
Lecture Midterm 1
Oct 10
Lecture 12. Uncertainty Quantification for GLMs

Oct 15
Lecture 13. Nonparametric Methods and Neural Networks
Oct 17
Lecture 14. Neural Networks and Interpretability

Oct 22
Lecture 15. Causal Inference I: Association and Causation
Oct 24
Lecture 16. Causal Inference II: Randomized Experiments

Oct 29
Lecture 17. Causal Inference III: Observational Studies
Oct 31
Lecture 18. Concentration Inequalities

Nov 5
Lecture 19. Bandits I
Nov 7
Lecture 20. Bandits II

Nov 12
Lecture 21. Reinforcement Learning I
Nov 14
Lecture Midterm 2

Nov 19
Lecture 22. Reinforcement Learning II
Nov 21
Lecture 23. Monte Carlo Tree Search

Nov 26
Lecture 24. Privacy in Machine Learning
Nov 28
Lecture Holiday

Dec 3
Lecture 25. Case Studies: Robustness and Generalization
Dec 5
Lecture 26. Course Wrap-Up