
Data 102, Spring 2025
Midterm 2

• You have 110 minutes to complete this exam. There are 6 questions, totaling 50 points.

• You may use one 8.5 × 11 sheet of handwritten notes (front and back), and the provided reference sheet. No
other notes or resources are allowed.

• You should write your solutions inside this exam sheet.

• You should write your Student ID on every sheet (in the provided blanks).

• Make sure to write clearly. We can’t give you credit if we can’t read your solutions.

• Even if you are unsure about your answer, it is better to write down something so we can give you partial credit.

• We have provided a blank page of scratch paper at the end of the exam. No work on this page will be graded.

• You may, without proof, use theorems and facts given in the discussions or lectures, but please cite them.

• We don’t answer questions individually. If you believe something is unclear, bring your question to us and if
we find your question valid we will make a note to the whole class.

• Unless otherwise stated, no work or explanations will be graded for multiple-choice questions.

• Unless otherwise stated, you must show your work for free-response questions in order to receive credit.

Last name

First name

Student ID (SID) number

Berkeley email

Name of person to your left

Name of person to your right

Honor Code [1 pt]:
As a member of the UC Berkeley community, I act with honesty, integrity, and respect
for others. I am the person whose name is on the exam, and I completed this exam in
accordance with the Honor Code.

Signature:
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1 True or False and Multiple Choice [6 Pts]
For (a) - (d), determine whether the statement is true or false. For all parts of this question, no
work will be graded and no partial credit will be assigned.

(a) [1 Pt] Backpropagation is an algorithm for efficiently computing gradients of functions.

True ⃝ False

(b) [1 Pt] In the causal graph below, T is a collider for estimating the treatment effect of S on R.

S F

R T

True ⃝ False

(c) [1 Pt] In multi-armed bandits, the regret incurred when using the explore-then-commit (ETC)
algorithm grows logarithmically as a function of the number of rounds.

True ⃝ False

(d) [1 Pt] If we are able to guarantee that we collect data on every single confounding variable
in a causal question, then we can always use matching to produce an unbiased estimate of the
average treatment effect (ATE).

⃝ True False

(e) [2 Pts] For each statement about intervals, determine whether it applies to confidence inter-
vals, credible intervals, both, or neither.

(i) Suppose a 95% interval for a coefficient is [0.7, 1.5]. Changing 95% to 90%
will make the interval wider (i.e., increase the difference between the upper and lower
bound).

⃝ Confidence ⃝ Credible ⃝ Both Neither

(ii) In a GLM, the interval for a coefficient depends on the prior distribution for
that coefficient.

⃝ Confidence Credible ⃝ Both ⃝ Neither
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2 Reinforcement Learning [5 Pts]
Consider a Markov Decision Process (MDP) with five states and the actions “left” and “right”.
States 1 and 5 are terminal states. At states 2-4, taking an action deterministically moves in that
direction. The reward for reaching state 1 is 10, and the reward for reaching state 5 is 100.

1 2 3 4 5

(a) [2 Pts] For this part only, suppose the robot’s programming is faulty, and when taking the left
action, the robot is equally likely to stay in place, move right, or move left. Which of the
following part(s) of the MDP must change to incorporate this information? Select all answers
that apply by filling in the square next to each correct answer.

2 Set of states

2 Set of actions

■ Transition probabilities

2 Rewards

2 Start and/or terminal state(s)

2 None of the above

(b) [2 Pts] Suppose the discount factor is 0.001. What is the optimal policy for state 2? Explain
your answer in one sentence or less: you should need very little calculation to answer this
question.

Optimal policy for state 2:

Explanation:

Solution:

Optimal policy: left

Explanation: with such a high discount factor, any reward we obtain from state 5 will be
discounted by at least 0.0012, which will be much less than the immediate reward we get
from moving to state 1. So, we should move left to maximize our reward.

(c) [1 Pt] Suppose the discount factor is 0.99. What is the optimal policy for state 2? Explain
your answer in one sentence or less: you should need very little calculation to answer this
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question.

Optimal policy for state 2:

Explanation:

Solution: Optimal policy: right

Moving to the right three times will obtain a reward of (0.99)2 × 100, which is greater
than the reward obtained from moving left (10). So, we should move right.
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3 Vending Machine Models [11 Pts]
Sandya is looking at vending machines on campus. She uses the number of unique snacks in a
machine (x1, measured when the machine is restocked in the morning) and the average cost of a
snack (x2) to predict the number of items sold from that machine (y) in a day.

(a) [2 Pts] Sandya defines a GLM with average prediction µ̂(x1, x2) = exp (β1x1 + β2x2) and
likelihood model y ∼ Poisson(µ̂). She sets β1 = 7 and β2 = −2. Which of the following
statements are accurate statements about Sandya’s model? Select all answers that apply by
filling in the square next to each correct answer. You may use the fact that exp(−2) ≈
0.14.

2 For every increase in the average price by $1, the model predicts that (on average)
the machine will sell two fewer items.

■ For every increase in the average price by $1, the model predicts that (on aver-
age) the machine will sell 14% as many items.

■ If the variance of y is much larger than the mean of y, then this model will be
overdispersed.

Solution: Increasing x1 by 1 gives µ′ = 5β1(x1+1)+β2x2 = 5β1 ∗ 5β1x1+β2x2 = 5β1 ∗ µ
Thus every new drink added to the vending machine causes the average rating to increase
by a multiplicative factor of 5β1

For the remainder of this question, Sandya experiments with two more predictors x3 and x4, and fits
various Poisson GLMs from data using different combinations of predictors x1 through x4. She
identifies three models that give her good accuracy, and makes the following table summarizing
their performance:

Model β1 β2 β3 β4 log-likelihood

A 6.0 -1.3 not used not used -1043.0
B 4.1 -0.2 1.8 5 -1042.0
C 5.0 -1.0 2.6 not used -1041.5

(b) [2 Pts] Sandya wants to use the Akaike Information Criterion (AIC) to choose the model that
will generalize best to new data. Based on this, which model should she choose and why?
You must show your work to receive credit.

Solution: The AIC is equal to −2(Log-Likelihood) + 2( # of coefficients). The three
models have AICs of:

AICA = −2(−1043) + 4 = 2090

AICB = −2(−1042) + 8 = 2092

AICC = −2(−1041.5) + 4 = 2087
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Smaller values of AIC indicate better generalization, so we choose the model with the
smallest AIC: Model C.
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(c) [2 Pts] For a particular vending machine, suppose x1 = 15, x2 = 2.9, x3 = 6, and x4 = 0.7.
Write an expression for the average prediction that Model C would make for this vending
machine. Your expression should contain only numbers and mathematical expressions (no
variables), but you do not need to simplify.

Solution: ȳ = exp (5× 15 + (−1)× 2.9 + 2.6× 6)

(d) [2 Pts] Sandya carries out a posterior predictive check (PPC) for Model A. Which of the
following must be true? Select all answers that apply by filling in the square next to each
correct answer.

2 Part of a PPC involves comparing posterior samples for the coefficients β1 and β2

to see if they are reasonable.

■ If the posterior predictive samples have a very similar distribution to the ob-
served number of items sold, then Sandya should conclude that the model is a
good fit for her training set.

2 If the posterior predictive samples have a very similar distribution to the observed
number of items sold, then Sandya should conclude that the model will generalize
well to vending machines from other college campuses.

(e) [3 Pts] Sandya trains two more models on a larger set of features x1 through x30, and com-
pares them to each other. Model G is a Poisson GLM, and Model R is a random forest trained
on the same data using the same four features. Which of the following statements, if true, will
make Model G a better choice than Model R? Select all answers that apply by filling in the
square next to each correct answer.

2 Sandya’s top priority is choosing the model that will give the most accurate predic-
tions.

2 Sandya wants to balance accuracy and interpretability, and on the training set,
Model G has very high error and Model R has very low error.

■ Sandya wants to balance accuracy and interpretability, and on the test set,
both Model G and Model R have very low error.
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4 Colorful Exams (11 pts)
Kobe and Ruhi are two GSIs in the same class who want to know whether using blue paper (instead
of white) causes students to score better on exams. Each GSI has 20 students in their section, and
there are no other GSIs or sections in the class.

Kobe has eleven exams printed on blue paper, and Ruhi has eight. Within each section, the GSI
randomly assigns students to either take their final exam on blue paper (treatment, Zi = 1) or on
white paper (control, Zi = 0). They define Yi as the student’s final exam score. They gather the
following data:

GSI Number of treated students Treatment mean score Control mean score
Kobe 11 75 60
Ruhi 8 90 80

(a) [2 Pts] Explain why a student’s section/GSI is a confounding variable, in two sentences or
less. Your answer must use only the information provided: additional assumptions or specu-
lation will not receive credit for this question.

Solution: A student’s section affects the treatment, their chance of receiving treatment
(students in Ruhi’s section are less likely to get blue paper); and also affects the outcome
(students in Ruhi’s section achieve higher scores regardless of treatment). So, section/GSI
is a confounding variable.

(b) [3 Pts] Which of the following must be true, based on the information provided? Select all
answers that apply by filling in the square next to each correct answer.

■ Conditioned on a student being in Kobe’s section, receiving treatment is inde-
pendent of the pair of potential outcomes.

■ The potential outcome Yi(1) represents the score that student i would receive
if they took the final exam on blue paper.

2 Ruhi’s teaching causes her students to do better on the final exam than Kobe’s stu-
dents.

(c) [1 Pt] Let Xi denote each student’s section (Xi = K for students in Kobe’s section and
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Xi = R otherwise). Compute the propensity scores e(K) and e(R).

e(K) =

e(R) =

Solution: e(K) = 11
20

and e(R) = 8/20 = 2/5.
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(d) [2 Pts] Compute the inverse propensity weighted (IPW) estimate for the causal effect of paper
color on final exam score. You may leave your answer in terms of the propensity scores e(K)
and e(R), but there should be no other variables (only numbers) in your answer. You do not
need to simplify.

Solution:

τ̂IPW =
1

n

[∑
Zi=1

Yi

e(Xi)
−
∑
Zi=0

Yi

1− e(Xi)

]

=
1

40

ï
10

75

e(K)
+ 8

90

e(R)
− 10

60

1− e(K)
− 12

80

1− e(R)

ò
(e) [1 Pt] Kobe and Ruhi correctly compute the answer from part (d). Is their result an unbi-

ased estimate of the average treatment effect (ATE) of using blue paper on final exam score?
Explain why or why not.

Yes

⃝ No

Explanation:

Solution: Conditioned on a student’s section assignment, the treatment decisions are ran-
domized, so the unconfoundedness assumption is satisfied. So, using IPW gives us an
unbiased estimate of the ATE.
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Note: the last part of this question is unrelated to any of the previous parts, and asks about instru-
mental variables in general.

(f) [2 Pts] In general, which of the following conditions are necessary to use an instrumental
variable W with treatment Z, outcome Y , and (unobserved) confounder X? Select all answers
that apply by filling in the square next to each correct answer.

■ Y ⊥⊥ W | Z

2 Cov[W,Z] > 0

■ Cov[Z,X] = 0

2 W ⊥⊥ X | Z

Solution:

• Exclusion Restriction

• We only need Cov[W,Z] ̸= 0

• We need Z ⊥⊥ X =⇒ Cov[Z,X] = 0

• W ⊥⊥ X,W ⊥̸⊥ X | Z because Z is a collider for W and Z
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5 Ice Cream Conundrum [10 Pts]
Clara opens a weekly ice cream pop-up in Berkeley. Every Saturday, she makes 100 scoops of ice
cream and sells as many as she can. The more scoops she sells, the more money she makes. Each
week, she makes exactly one flavor from the following list: vanilla, mango, strawberry, coconut.

Her friend suggests using multi-armed bandits to decide on the best flavor to make each week.
They define the weekly reward as the number of scoops she sells that week.

(a) [2 Pts] Describe one assumption she is making by using multi-armed bandits that might not
be true, and explain why. Your answer must be two sentences or less.

Solution: Multi-armed bandits assume stationary rewards, but people’s preferences may
change over time (based on trends, people’s moods, hype about certain flavors, etc.).

For the remainder of this question, assume that any conditions necessary to use multi-armed
bandits are satisfied.

(b) [2 Pts] For this part only, Clara conducts a survey of 15 representative likely customers on
which of her four flavors they are most likely to buy. Clara is concerned about the small sample
size, but still wants to use the survey results in her decisions. Given this, which algorithm is
the best choice for Clara to use? Choose the single best answer by filling in the circle next
to it. You must explain your answer in two sentences or less to receive full credit.

⃝ Explore-then-Commit (ETC)

⃝ Upper Confidence Bound (UCB)

Thomson Sampling (TS)

Explanation:
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Solution: Thomson sampling lets us use the information from the survey as a prior,
which neither of the other two methods can do.

No work or answers below this line will be graded.
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For the remainder of the question, assume that Clara uses one of the three bandit algorithms you
learned about (ETC, UCB, TS). After 26 weeks, she summarizes her sales in the following table:

Flavor Number of weeks made Sample average (number scoops sold)
Vanilla 4 80
Mango 4 81
Strawberry 9 83
Coconut 9 84

(c) [2 Pts] For this part only, assume that Clara is using the UCB algorithm. Without knowing
how Clara set her confidence level in the UCB algorithm, which of the following flavor(s) are
possible for her to choose for the 27th week? Select all answers that apply by filling in the
square next to each correct answer.

2 Vanilla

■ Mango

2 Strawberry

■ Coconut

(d) [2 Pts] Given only the information in the table above, explain why it is impossible for Clara
to have used the explore-then-commit (ETC) algorithm. Your answer should be two sentences
or less.

Solution: In expore-then-commit, all the arms we didn’t commit to should have exactly
the same number of times pulled. That isn’t the case here, so we know that Clara isn’t
using ETC.

(e) [2 Pts] Clara talks to other ice cream vendors in Berkeley, and learns that if she had sold
mango each week, she would have sold (on average) 85 scoops per week, and that any other
flavor would have sold fewer scoops (on average).

What is her total regret for the 26 weeks she sold ice cream? You must include the units (e.g.,
seconds, inches2, etc.) to receive full credit.
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Solution: There were two ways to calculate this, both of which produce the same answer:

Regret = 85× 26− (80× 4 + 81× 4 + 83× 4 + 84× 9)

= 5× 4 + 4× 4 + 2× 9 + 1× 9

= 63 scoops
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6 Concentrating on Horses [6 Pts]
Charisse loves horses, so she moves to Las Vegas and bets on horse racing for several weeks. She
plans to bet on hundreds of races. Let Xi represent how much money she earns betting on race i
(positive values indicate winnings, and negative values indicate loss). Assume Charisse’s earnings
for each race are i.i.d. Let Tn = 1

n

∑n
i=1Xi be her average earnings per race after n races.

Charisse befriends all the horse trainers and gets inside information, so her expected winnings for
each race is $2. To avoid having to pay out too much money, the casino will kick anyone out if
their average winnings after 600 races are at least $10 (in other words, if T600 ≥ 10). You may
assume that the casino only checks this information at exactly 600 races, and does not look at their
earnings after that.

For parts (a) and (b), you must provide the tightest (i.e., smallest) correct bound to earn full
credit.

Hint: the statement of Hoeffding’s Inequality on the reference sheet may be helpful for some parts.

(a) [1 Pt] Given only the information above and what you learned in Data 102, provide the tight-
est possible upper bound on the probability that the casino kicks Charisse out for the reason
above.

Solution: We do not have enough information to use any concentration inequality other
than Markov’s inequality, which is not relevant because T100 can take on negative values.
So, the best upper bound is 1.

(b) [2 Pts] For this part only, Charisse structures her bets so that she never loses more than $60
on any race, and she never wins more than $180.

Given this information and what you learned in Data 102, provide the tightest possible upper
bound on the probability that the casino kicks Charisse out for the reason above. You do not
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need to simplify your answer to earn full credit.

Solution:

P (T100 > 10) = P (T600 − 2 > 8)

≤ exp

Å−2× 600× 64

(240)2

ã
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(c) [3 Pts] For this part only, Charisse structures her bets so that she never loses more than $5 on
any race, and she never wins more than $15.

What is the smallest number of races n that she needs to bet on before she can be at least 95%
confident that her average earnings will be positive? You must express your answer as an
integer for full credit.

You may use the approximations log(0.05) = −3 and/or log(0.95) = −0.05.

Solution: We want P (Tn > 0) ≥ 0.95, or equivalently P (Tn < 0) ≤ 0.05. We can
bound the probability on the LHS using Hoeffding’s inequality:

P (Tn < 0) = P (Tn − 2 < −2)

≤ exp

Å−2× n× 4

(15 + 5)2

ã
exp

Å−2× n× 4

400

ã
≤ 0.05

n ≥ 3

8
× 400

n ≥ 150



Data 102 Midterm 2, Page 19 of 20 SID:

This page has been intentionally left blank. No work on this page will be graded.
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7 Congratulations [0 Pts]
Congratulations! You have completed Midterm 2.

• Make sure that you have written your student ID number on every other page of the
exam. You may lose points on pages where you have not done so.

• Also ensure that you have signed the Honor Code on the cover page of the exam for 1 point.
• If more than 10 minutes remain in the exam period, you may hand in your paper and leave.

If ≤ 10 minutes remain, please sit quietly until the exam concludes.

[Optional, 0 pts] Draw a picture or cartoon that’s related to your favorite thing you’ve learned in
Data 102 so far.



Midterm 2 Reference Sheet

Useful Distributions:

Distribution Support PDF/PMF Mean Variance Mode

X ∼ Poisson(λ) x = 0, 1, 2, . . . λxe−λ

x!
λ λ ⌊λ⌋

X ∼ Binomial(n, p) x ∈ {0, 1, . . . , n}
(
n
x

)
px(1− p)1−x np np(1− p) ⌊(n+ 1)p⌋

X ∼ Beta(α, β) 0 ≤ x ≤ 1 Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α
α+β

α
α+β

β
α+β

1
α+β+1

α−1
α+β−2

X ∼ Gamma(α, β) x ≥ 0 βα

Γ(α)
xα−1e−βx α

β
α
β2

α−1
β

X ∼ N (µ, σ2) x ∈ R 1
σ
√
2π

exp
Ä
−1

2

(
x−µ
σ

)2 ä
µ σ2 µ

X ∼ Exponential(λ) x ≥ 0 λ exp(−λx) 1
λ

1
λ2 0

X ∼ InverseGamma(α, β) x ≥ 0 βα

Γ(α)
x−α−1e−β/x β

α−1
β2

(α−1)2(α−2)
β

α+1

Conjugate Priors: For observations xi, i = 1, . . . , n:

Likelihood Prior Posterior
xi|θ ∼ Bernoulli(θ) θ ∼ Beta(α, β) θ|x1:n ∼ Beta (α +

∑
i xi, β +

∑
i(1− xi))

xi|µ ∼ N (µ, σ2) µ ∼ N (µ0, 1) µ|x1:n ∼ N
Ä

σ2

σ2+n

(
µ0 +

1
σ2

∑
i xi

)
, σ2

σ2+n

ä
xi|λ ∼ Exponential(λ) λ ∼ Gamma(α, β) λ|x1:n ∼ Gamma (α + n, β +

∑
i xi)

xi|λ ∼ Poisson(λ) λ ∼ Gamma(α, β) λ|x1:n ∼ Gamma (α +
∑

i xi, β + n)

xi|λ ∼ N (µ, σ2) σ ∼ InverseGamma(α, β) σ|x1:n ∼ InverseGamma (α + n/2, β + (
∑n

i=1(xi − µ)2) /2)

Generalized Linear Models
Regression Inverse link function Likelihood
Linear identity Gaussian
Logistic sigmoid Bernoulli
Poisson exponential Poisson
Negative binomial exponential Negative binomial

Hoeffding’s Inequality: If X1, . . . , Xn are independent random variables bounded between a and b, then

P

(
1

n

n∑
i=1

(Xi − E[Xi]) > t

)
≤ exp

Å
− 2nt2

(a− b)2

ã
P

(
1

n

n∑
i=1

(Xi − E[Xi]) < −t

)
≤ exp

Å
− 2nt2

(a− b)2

ã
P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

)
≤ 2 exp

Å
− 2nt2

(a− b)2

ã
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