
Data 102 Homework 6 Due: 11:59 PM PT Friday, April 28, 2023

Overview

Submit your writeup, including any code, as a PDF via gradescope.1 We recommend reading
through the entire homework beforehand and carefully using functions for testing procedures,
plotting, and running experiments. Taking the time to reuse code will help in the long run!

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, please include their names on your submission. Please make sure any handwritten
answers are legible, as we may deduct points otherwise.

Markov Decision Process for Robot Soccer

A soccer robot R is on a fast break toward the goal, starting in position 1. From positions
1 through 3, it can either shoot (S) or dribble the ball forward (D). From 4 it can only shoot.
If it shoots, it either scores a goal (state G) or misses (state M). If it dribbles, it either
advances a square or loses the ball, ending up in state M. When shooting, the robot is more
likely to score a goal from states closer to the goal; when dribbling, the likelihood of missing
is independent of the current state.

In this Markov Decision Process (MDP), the states are 1, 2, 3, 4, G, and M, where G
and M are terminal states. The transition model depends on the parameter y, which is the
probability of dribbling successfully (i.e., advancing a square). Assume a discount of γ = 1.
For k ∈ {1, 2, 3, 4}, we have

Pr(G | k, S) = k

6

Pr(M | k, S) = 1− k

6
Pr(k + 1 | k,D) = y

Pr(M | k,D) = 1− y,

R(k, S,G) = 1

and rewards are 0 for all other transitions.

(a) (3 points) Denote by V π the value function for the specific policy π. What is V π(1) for
the policy π that always shoots?

(b) (4 points) Denote by Q∗(s, a) the value of a q-state (s, a), which is the expected utility
when starting with action a at state s, and thereafter acting optimally. What is Q∗(3, D)
in terms of y?

1In Jupyter, you can download as PDF or print to save as PDF
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(c) (3 points) For what range of values of y is Q∗(3, S) ≥ Q∗(3, D)? Interpret your answer
in plain English.

Private Mean Estimation

One of the most important techniques in data analysis and machine learning is mean esti-
mation. It is used a subroutine in essentially every task. In this question, we will explore
how to incorporate differential privacy into mean estimation. En route, we will explore the
Laplace mechanism, which is one of the fundamental tools in building differentially private
algorithms.

Let S = {X1, . . . Xn} be i.i.d. samples from a Bernoulli distribution with unknown mean
p. Recall, from HW5, that the sample mean

pn(S) =
1

n

∑
x∈S

x (2)

satisfies |pn − p| ≤ cn−1/2 with probability 0.99 for some constant c.
In order to incorporate privacy, the main idea is to add noise to the estimator Equation (2).

For the noise distribution, we will use the Laplace distribution, which has density given by

fµ,b(x) =
1

2b
exp

(
−|x− µ|

b

)
.

We will denote this distribution as Lap (µ, b). The mean of the distribution is µ and the
variance is 2b2. The differentially private estimator is given by

p̂ϵ,n (S) = pn(S) + Y

where Y is sampled from Lap
(
0, 1

ϵn

)
. Here ϵ is a parameter that will control the privacy.

(a) (1 point) Let S1 and S2 be two data sets with n binary samples ({0, 1}-valued) each.
Additionally, also assume that S1 and S2 differ only in one item. More precisely, we can
construct S2 by removing one element from S1 and adding another binary value (0 or 1).

Show that the sample means for the two sets are close. Specifically, show:∣∣pn(S1)− pn(S2)
∣∣ ≤ 1

n
. (3)

This is referred to as pn having sensitivity n−1.

(b) (1 point) For any fixed S, explain why p̂ϵ,n (S) is distributed according to a Laplace
distribution. What are the corresponding parameters?

(c) (2 points) First, we will show that the above estimator is still fairly accurate. Show that
with probability 0.99 (over the sampling of the noise), for every S, we have∣∣pn (S)− p̂ϵ,n (S)

∣∣ ≤ 20

ϵn
.

You may find it especially useful to apply a concentration inequality we learned about
in class.
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(d) In this part, we will see that the mechanism is ϵ-differentially private. Let us recall the
definition of differential privacy in this context. An estimator g is ϵ-differentially private
if for all sets A ⊂ R, we have

Pr[g(S1) ∈ A] ≤ exp(ϵ) · Pr
[
g(S2) ∈ A

]
where S1, S2 are two data sets that differ only in one item.

(i) (3 points) Let Y1 ∼ Lap (µ1, b) and Y2 ∼ Lap (µ2, b). Show that

Pr [Y1 ∈ A] ≤ exp

(
|µ1 − µ2|

b

)
· Pr [Y2 ∈ A] .

This hints at why the Laplace distribution is particularly well suited for differential
privacy.

Hint: Find a bound on the likelihood ratio, and relate that to the inequality above

(ii) (2 points) Using Equation (3) and earlier parts of the question, show that the esti-
mator p̂ϵ,n is ϵ-differentially private.

(iii) (1 points) Put these steps together show that p̂ϵ,n is a ϵ-DP estimator for p with
error ∣∣p− p̂ϵ,n

∣∣ ≤ O

(
1√
n
+

1

nϵ

)
with probability 0.98 over the randomness of the sample and the mechanism.

(e) (1 point) Now, suppose that instead of Bernoulli, the individual samples Xi were real-
valued random variables taking values in [0, 5]. Which part(s) of the analysis above (if
any) would change? You don’t need to redo the analysis.
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