
Data 102 Homework 5 Due: 11:59 PM PT Friday, April 7, 2023

Data 102 Homework 5

Due: 11:59pm Friday, April 7, 2023

Overview

Submit your writeup, including any code, as a PDF via gradescope.1 We recommend reading
through the entire homework beforehand and carefully using functions for testing procedures,
plotting, and running experiments. Taking the time to reuse code will help in the long run!

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, please include their names on your submission. Please make sure any handwritten
answers are legible, as we may deduct points otherwise.

Optimal Mean Estimation via Concentration Inequalities (cont.)

Recall the setup of Question 3 on Homework 4:
Suppose we observe a sequence of i.i.d. random variables X1, . . . , Xn, each distributed

according to an unknown distribution with a known variance σ2 and an unknown mean µ
that we would like to learn more about. In particular, we would like to estimate the true
value of mean µ from the observations we have.

In that question, we spent some time analyzing the sample mean, and how well it functions
as an estimator for mean µ. In part (c), we came to a startling observation: when we strive
to achieve a high confidence (i.e setting 1 − δ closer and closer to 1) in our estimate of µ,
the number of samples n that we need to collect dramatically increases in situations where
we cannot assume that X is bounded. This makes our usage of the sample mean a liability:
since we don’t know X’s distribution, we cannot assume that X is bounded, and we’ll have
to collect thousands of samples just to reach our desired level of confidence.

Since we would ideally like to take advantage of Hoeffding’s bound, we’ll replace the
sample mean with another estimator, one which involves the construction of bounded random
variables. To construct this estimator, we’ll start by considering m groups of Xi, each with
fixed size n0. We’ll compute the sample mean for each group, and call these sample means
S(1), . . . , S(m). Then, we’ll use the median of all these group means as our estimate for the
mean µ. The diagram below summarizes our approach.

X1, X2, . . . Xn0︸ ︷︷ ︸
Sample mean S(1)

Xn0+1, Xn0+2, . . . , X2n0︸ ︷︷ ︸
Sample mean S(2)

. . . Xn−n0+1, Xn−n0+2, . . . , Xn︸ ︷︷ ︸
Sample mean S(m)︸ ︷︷ ︸

Median Sn

We do this because even though one such sample mean S(i) might be far from the true
mean µ, we hope (and will show) that the median of all of them is more likely to be close to

1In Jupyter, you can download as PDF or print to save as PDF
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the true mean µ.
(a) (2 points) Fix a sample size n0 = ⌈4σ2

ϵ2
⌉. For each of the group means i, we define a

binary random variable Zi:

Zi = 1(|S(i) − µ| ≥ ϵ).

In other words, Zi is 0 if the corresponding group mean is close to the true mean µ
(within ϵ), and 1 otherwise.

Show that E[Zi] ≤ 1/4.

Hint: Zi is a Bernoulli random variable.

(b) (2 points) We set SMed := Median({S(1), . . . , S(m)}). This is called the median-of-means
estimator. Explain in words why having |SMed − µ| ≥ ϵ implies that

∑m
i=1 Zi ≥ m

2 .

Hint: If y is the median of m numbers, it means that ⌈m/2⌉ of the numbers are greater
than or equal to y, and similarly ⌈m/2⌉ of the numbers are less than or equal to y.

(c) (2 points) By taking probabilities, part (b) implies

P(|SMed − µ| ≥ ϵ) ≤ P

(
1

m

m∑
i=1

Zi ≥
1

2

)
.

If we combine this fact with the result of (a), we can show that

P(|SMed − µ| ≥ ϵ) ≤ P

(
1

m

m∑
i=1

(
Zi − E[Zi]

)
≥ 1

4

)
.

Now use Hoeffding’s inequality to compute what number m is sufficient to ensure that
|SMed −µ| ≤ ϵ with probability at least 1− δ. What is the final number of samples of X
required?

Simulation Study of Bandit Algorithms

In this problem, we evaluate the performance of two algorithms for the multi-armed bandit
problem. The general protocol for the multi-armed bandit problem with K arms and n rounds
is as follows: in each round t = 1, . . . , n the algorithm chooses an arm At ∈ {1, . . . ,K} and
then observes reward Xt for the chosen arm. The bandit algorithm specifies how to choose
the arm At based on what rewards have been observed so far. In this problem, we consider
a multi-armed bandit for K = 2 arms, n = 50 rounds, and where the reward at time t is
Xt ∼ N (At − 1, 1), i.e. N (0, 1) for arm 1 and N (1, 1) for arm 2.

(a) (4 points) Consider the multi-armed bandit where the arm At ∈ {1, 2} is chosen accord-
ing to the explore-then-commit algorithm (below) with c = 4. Let Gn =

∑n
t=1Xt denote

the total reward after n = 50 iterations. Simulate the random variable Gn a total of
B = 2000 times and save the values G

(b)
n , b = 1, . . . , B in a list. Report the (empirical)

average pseudoregret 1
B

∑B
b=1

(
50µ∗ −G

(b)
n

)
(where µ∗ is the mean of the best arm) and

plot a normalized histogram of the rewards.
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Algorithm 1 Explore-then-Commit Algorithm

input: Number of initial pulls c per arm
for t = 1, . . . , cK : do

Choose arm At = (t mod K) + 1
end

Let Â ∈ {1, . . . ,K} denote the arm with the highest average reward so far.
for t = cK + 1, cK + 2, . . . , n : do

Choose arm At = Â
end

(b) (4 points) Consider the multi-armed bandit where the arm At ∈ {1, 2} is chosen accord-
ing to the UCB algorithm (below) with c = 4, n = 50 rounds. Repeat the simulation in
Part (a) using the UCB algorithm, again reporting the (empirical) average pseudoregret

and the histogram of G
(b)
n for b = 1 . . . B for B = 2000. How does the pseudoregret

compare to your results from part (a)?
Note: If TA(t) denote the number of times arm A has been chosen (up to and including
time t) and µ̂A,t is the average reward from choosing arm A (up to and including t),

then use the upper confidence bound µ̂A,TA(t−1) +
√

2 log(20)
TA(t−1) . Note also that this algo-

rithm is slightly different than the one used in lab and lecture as we are using an initial
exploration phase.

Algorithm 2 UCB Algorithm

input: Number of initial pulls c per arm
for t = 1, . . . , cK : do

Choose arm At = (t mod K) + 1
end
for t = cK + 1, cK + 2 . . . : do

Choose arm At with the highest upper confidence bound so far.
end

(c) (1 point) Compare the distributions of the rewards by also plotting them on the same
plot and briefly justify the salient differences.
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