
Data 102 Homework 3 Due: 11:59 PM Friday, March 10, 2023

Overview

Submit your writeup, including any code, as a PDF via gradescope.1 We recommend reading
through the entire homework beforehand and carefully using functions for testing procedures,
plotting, and running experiments. Taking the time to reuse code will help in the long run!

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, please include their names on your submission. Please make sure any handwritten
answers are legible, as we may deduct points otherwise.

GLM for Dilution Assay

1. In this question, you’ll go beyond the four GLM types you saw in class, and explore a
new kind of GLM for solving a specific scientific problem.

Being able to reformulate problems as generalized linear models (GLMs) enables you to
solve a wide variety of problems with existing packages. We recommend reviewing the
examples of GLMs from Lectures 10 and 11. In particular, make sure you understand
that formulating a GLM involves choosing an 1) output distribution and 2) link function
that are appropriate for the application at hand.

In this problem, you’ll retrace the footsteps of the statistician R. A. Fisher and develop
one of the very first applications of GLMs. In a 1922 paper, Fisher formulated a GLM
he used to estimate the unknown concentration ρ0 of an infectious microbe in a solution.
Without specialized technology to directly measure ρ0 from the solution, Fisher devised
the following procedure: we will progressively dilute the original solution, and after each
dilution, we’ll pour out some small volume v onto a sterile plate. If zero microbes land
on the plate, it will remain sterile, but if any microbes land on a plate, they will grow
visibly on it (we call this an “infected plate”). By observing whether or not the plate is
infected at each dilution, and by formulating the relationship between this data and ρ0
as a GLM, we can estimate ρ0 from this data.

Specifically, let ρt denote the concentration at dilution t. Each time, we dilute the solution
to be half its concentration, such that

ρt =
ρ0
2t

(1)

for t = 0, 1, . . .. When we pour out volume v of the solution onto the plate, and wait
awhile to allow for microbe growth, we can observe whether a plate was infected (i.e.,
has a non-zero number of microbes) or is sterile (i.e., has zero microbes). Therefore, our
data Yt ∈ {0, 1} is whether or not the plate is infected at each dilution.

In other words, we observe a sequence of binary values Y0, . . . , Yt, and from
that, we want to estimate the initial concentration ρ0. In this question, we’ll
formulate a GLM that relates ρ0 and t to the data Yt. Estimating the parameters of this
GLM will then allow us to estimate ρ0, as will become clear in the last part.

1In Jupyter, you can download as PDF or print to save as PDF
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(a) (2 points) At dilution t, the data Yt ∈ {0, 1} indicates whether or not the plate is
infected. The chance that a plate gets infected is denoted by µ(t) := E[Yt]. Write
down an output distribution for Yt that is appropriate for the values it takes on,
using µ(t) as a parameter. (We’ll derive what µ(t) should be in the next part).

(b) (3 points) At dilution t, we pour out volume v onto a plate, so the expected number
of microbes on the plate is ρtv. The actual number of microbes is distributed as a
Poisson random variable with this mean ρtv:

# microbes on plate at dilution t ∼ Poisson(ρtv). (3)

Using this fact, write out an expression for µ(t) := E[Yt]. Start with

µ(t) = P(plate is infected at dilution t) (4)

= 1− P(there are 0 microbes on plate at dilution t). (5)

(c) (3 points) Use your findings from part (b), along with Equation (1), to find a link
function g such that

g(µ(t)) = β0 + β1t (8)

for some constants β0 and β1. (Remember that in class, we talked about the inverse
link function g−1, such that µ(t) = g−1(β0 + β1t)). Your answer should be of the
form “β0 = . . . and β1 = . . .”.

(d) (2 points) Choosing an appropriate output distribution and link function as we’ve
done in Parts (a) and (c) completes the GLM specification. Now, suppose you’ve
estimated β0 and β1 (e.g., using maximum-likelihood estimation). Write down an
estimate of ρ0.

Hint: For this question, you do not need to estimate β0 and β1: assume you know
them, and find a way to estimate ρ0 from them.

Image Denoising with Gibbs Sampling

2. In this problem, we derive a Gibbs sampling algorithm to restore a corrupted image [1].
A grayscale image can be represented by a 2-dimensional array X of shape n×m, where
the intensity of the (i, j)-th pixel is Xij . In this problem, we are given an image X whose
pixels have been corrupted by noise, and the goal is to recover the original image Z.

(a) (2 points) Load the grayscale image X.pkl as a numpy arrayX. Visualize the image.

From plotting the image X, it is clear that it has been corrupted with noise. Let
Z denote the original image, which we also represent as an n × m array. Let I =
{(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ m} denote the collection of all pixels in the image,
represented by the corresponding index of the array. Given a pixel (i, j), define the
set of neighboring pixels to be

N(i,j) =
{
(i′, j′) ∈ I : (i = i′ and |j − j′| = 1) or (|i− i′| = 1 and j = j′)

}
.
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To capture the fact that, in natural images, neighboring pixels are likely be similar,
we consider the following prior over the original image:

p(Z) ∝ exp

−1

2

∑
(i,j)∈I

aZ2
ij − b

∑
(i′,j′)∈N(i,j)

ZijZi′j′

 .

Assuming the image has been corrupted with Gaussian noiseX(i,j) | Z(i,j) ∼ N (Z(i,j), τ
−1)

(independently across pixels (i, j) ∈ I), the complete posterior can be written as

p(Z | X) ∝ exp

−1

2

∑
(i,j)

(a+ τ)Z2
ij − 2τZijXij − b

∑
(i′,j′)∈N(i,j)

ZijZi′j′

 (11)

Let Sij =
∑

(i′,j′)∈N(i,j)
Zi′j′ . By completing the square in the posterior (11), we have

Zij | (Zi′j′)(i′,j′ )̸=(i,j), X ∼ N
(
τXij + bSij

a+ τ
,

1

a+ τ

)
(12)

(b) (2 points) Fill in the missing line of pseudocode for a Gibbs sampler of the posterior,
p(Z|X). Be specific with each conditioned variable and sub/superscript!

• Initialize Z(0) = X.

• For t = 1, . . . , T :

– Sample Z
(t)
1,1 ∼ p(Z1,1 | Z1,2 = Z

(t−1)
1,2 , Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

– Sample Z
(t)
1,2 ∼ p(Z1,2 | Z1,1 = Z

(t)
1,1, Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

– Sample Z
(t)
1,3 ∼ # TODO: fill this in.

– . . .

– Sample Z
(t)
n,m ∼ p(Zn,m | Z1,1 = Z

(t)
1,1, Z1,2 = Z

(t)
1,2, . . . , Zn,m−1 = Z

(t)
n,m−1, X)

(c) (3 points) Write the pseudo-code from Part (b) more explicitly both by using a dou-
ble for-loop over (i, j) ∈ I and by being explicit about the conditional distributions

of the form p(Z1,1 | Z1,2 = Z
(t−1)
1,2 , Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

(d) (5 points) Implement the Gibbs sampler from Part (c) with a = 250, b = 62.5, and
τ = 0.01. Run your code for T = 1 iteration, i.e. update each coordinate exactly
once. Visualize the resulting image Z(1). Time your code and estimate how long it
would take to compute Z(100).

Hint : To convert your pseudo-code into real code, it might be helpful to use

np.random.randn() to generate a N (0, 1) random variable at each step.

(e) (2 points) The bottleneck in running the Gibbs sampler from Part (d) is sampling
a single pixel Zij with the values of all others held fixed. Fortunately, it is possible
to speed up the sampling process with an improvement known as blocked Gibbs
sampling. Specifically, define two subsets of the pixels Ieven = {(i, j) : i+ j is even}
and Iodd = {(i, j) : i+ j is odd} . The blocked Gibbs sampler proceeds as follows:

• Initialize Z(0) = X.

• For t = 1, . . . , T :

– Let Z = Z(t−1).
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– Let ∆ be an n×m matrix with N (0, 1
a+τ ) entries.

– For (i, j) ∈ Ieven:
∗ Let Sij =

∑
(i′,j′)∈N(i,j)

Zi′j′

– Update ZIeven = τ
a+τXIeven +

b
a+τ SIeven +∆Ieven .

– For (i, j) ∈ Iodd:
∗ Let Sij =

∑
(i′,j′)∈N(i,j)

Zi′j′

– Update ZIodd = τ
a+τXIodd +

b
a+τ SIodd +∆Iodd .

– Let Z(t) = Z.

The advantage of this approach is that the inner for-loops can be vectorized. Explain
why updating half the variables ZIeven (and then ZIodd) at once is justified.
Hint : if you’re not sure why, try drawing out a small grid of pixels and label each
one with i+ j.

(f) (1 point) Implement the Gibbs sampler from Part (e) using a = 250, b = 62.5 and
τ = 0.01. Run your code for T = 100 iterations, and visualize the resulting image
Z(100). Time your code and report how long it took.
Hint: Compute the entire n × m matrix S at once using matrix operations on Z.
You may find it helpful to pad the matrix Z with a border of zeros using Z bar =

np.pad(Z, 1). Then use slicing on the (n+ 2)× (m+ 2) matrix Z bar to compute
S.

Bayesian GLM

3. In this problem, we’ll apply Gaussian linear regression to election data, and use PyMC3
to explore the effect of what prior we choose.
Suppose x1, . . . , xn ∈ Rd are fixed feature vectors. Assume the linear model, where we
observe

yi = β⊤xi + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent of each other, and β ∈ Rd and σ2 > 0 are unknown.
Let y = (y1, . . . , yn), ε = (ε1, . . . , εn), and let X denote the matrix whose i-th row is equal
to xi. Using this notation, we may more succinctly write the linear model as

y = Xβ + ε, ε ∼ N(0, σ2In).

We model the regression weights as a random variable with the following prior distribu-
tion:

β ∼ N(0, σ2
0Id).

where σ2
0 > 0 is hyperparameter we choose.

Using the file us_elections.csv, we’ll try to predict the outcome of the 2020 election
using information from previous elections2. Specifically, for each Congressional district,

2For more on this dataset, see here
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we’ll try to predict how much Democrats won by (house_dem20_margin column) using
the current officeholder’s ideology score (govtrack_ideology column) and the result from
the 2018 election (house_dem18_margin column), with no intercept. Because we’re pre-
dicting using only two variables, we can easily visualize each value for the 2-dimensional
β. When making visualizations below, your x-axis should have values for the coefficient
that corresponds to govtrack_ideology, and the y-axis should have values for the coef-
ficient that corresponds to house_dem18_margin.

(a) (4 points) Use the documentation of PyMC3 to figure out how to choose a prior for a
GLM, and then obtain 1000 samples from the posterior distribution for β, given the
model and data as described above. Make three scatter plots showing the posterior
samples for different values of σ2

0 = {1, 0.01, 10−4}. All three scatter plots should be
plotted with the same axis range (for example, if one scatter plot has an x-axis that
goes from -0.3 to 0.1, then all three of them should too).

Some helpful hints:

• To set up a GLM with no intercept in PyMC3, you must specify the formula
using something like y ~ 0 + x1 + x2.

• For a GLM specified as above, you can get posterior samples as a dataframe
using trace.posterior[[’x1’, ’x2’]].to_dataframe()

• If your PyMC3 code seems to be hanging or freezing, try setting the cores

argument to 1 instead of 2 when you call pm.sample.

• While debugging your code, it might help to restart the kernel between each
time you try to run it.

• Make sure you don’t mix up standard deviation and variance!

(b) (2 points) Explain any similarities or differences in your plots from part (a). In
particular, you should explain why some of them look similar to others, and why one
looks quite different.

(c) (2 points) Explain in plain English what assumptions we are making when we use a
prior with a very small value of σ0. Your answer should be understandable to anyone,
even if they don’t understand GLMs or regression. For example, you might say “we
are assuming that the officeholder ideology has a bigger effect on predicting 2020
outcome than the 2018 outcome” (this is not the right answer, just an example).
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