
Data 102, Spring 2023 Midterm 1
• You have 110 minutes to complete this exam. There are 5 questions, totaling 40 points.

• You may use one 8.5 × 11 sheet of handwritten notes (front and back), and the provided reference
sheet. No other notes or resources are allowed.

• You should write your solutions inside this exam sheet.

• You should write your name and Student ID on every sheet (in the provided blanks).

• Make sure to write clearly. We can’t give you credit if we can’t read your solutions.

• Even if you are unsure about your answer, it is better to write down partial solutions so we can give
you partial credit.

• We have provided two blank pages of scratch paper, one at the beginning and one at the end of the
exam. No work on these pages will be graded.

• You may, without proof, use theorems and facts that were given in the discussions or lectures, but
please cite them.

• We don’t answer questions individually. If you believe something is unclear, bring your question to
us and if we find your question valid we will make a note to the whole class.
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1. (5 points) For each of the following, determine whether the statement is true or false.
For this question, no work will be graded and no partial credit will be assigned.

(a) (1 point) The choice of the constant M or proposal distribution f(x) in rejection
sampling has no effect on sampling efficiency, as long as Mq(x) ≤ f(x), where q(x)
is the unnormalized target density.

⃝ A. TRUE ⃝ B. FALSE

(b) (1 point) Consider two medical tests for a disease. The first test has TPR=0.9 and
FPR=0.05, while the second test has TPR=0.54 and FPR=0.03. Then the first
test will always have a higher FDR than the second test.

⃝ A. TRUE ⃝ B. FALSE

(c) (1 point) Given specific sample data, the Benjamini-Hochberg procedure guaran-
tees that the FDP will be lower than the requested level α.

⃝ A. TRUE ⃝ B. FALSE

(d) (1 point) When using a GLM to fit continuous y with the Bernoulli likelihood, the
Identity and Sigmoid are valid choices for the inverse link function.

⃝ A. TRUE ⃝ B. FALSE

(e) (1 point) When conducting linear regression in Bayesian perspective, the choice of
prior will determine the form of regularization applied to the model.

⃝ A. TRUE ⃝ B. FALSE
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2. (8 points) A different approach to FWER control. Consider the following algo-
rithm, known as the Holm-Bonferroni procedure:

1. Given a significance level α ∈ [0, 1] and a set of n p-values, p1, . . . , pn. Sort the
p-values in non-decreasing order: p(1) ≤ p(2) ≤ · · · ≤ p(n)

2. For k ∈ {1, 2, . . . , n}, if p(k) ≤ α
n−k+1

, reject the corresponding null hypothesis and
continue. Otherwise, fail to reject all remaining hypotheses.

(a) (2 points) For this part only, we consider the followintg 5 p-values for multiple
hypothesis testing:

p-value threshold decision reality

0.001 1

0.007 1

0.01 0

0.1 0

0.16 0

Fill in the threshold and decision columns of the above table for the Holm-Bonferroni
procedure with level α = 0.05. How many tests does the procedure reject?

Solution: We reject 3 tests.

p-value threshold decision reality

0.001 0.01 1 1

0.007 0.0125 1 1

0.01 0.0167 1 0

0.1 0.025 0 0

0.16 0.05 0 0

(b) (1 point) Like the Bonferroni correction, the Holm-Bonferroni procedure controls
the family-wise error rate at level α. Does the Holm-Bonferroni method make more
or less discoveries than the Bonferroni correction? Justify your answer.
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Solution: It is less conservative, since it does not conduct all tests at level α
n
.

Only the first p-value is tested at that level and other tests are made at levels
greater than α

n
.

(c) (1 point) Comparing the Benjamini-Hochberg procedure with Bonferroni, which
one makes fewer discoveries? In other words, does Bonferroni at rate α also controls
FDR at rate α or Benjamini-Hochberg at rate α also controls FWER at rate α?
Justify your answer in words.

Solution: Bonferroni is more conservative because it always uses a smaller p-
value threshold: α

n
≤ kα

n
for all values k ∈ {1, . . . , n}

(d) (2 points) Assuming n = 20, draw the Benjamini-Hochberg guide line and Holm-
Bonferroni guide line ( α

n−k+1
) on the same plot. X-axis should be k and the y-axis

should be the p-value threshold. The Holm-Bonferroni guideline does not need to
be exact, but its shape and position relative to the BH line should be accurate.
Make sure you specify the equation for each line.

Solution: BH guideline is p = α
20
k whereas HB guideline is p = α

21−k

Figure below shows the two guidelines for when α = 0.05
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(e) (2 points) Comparing the Benjamini-Hochberg procedure with Holm-Bonferroni,
which one makes more discoveries for the same significance level α? You must show
your work: show mathematically that either all discoveries made by Benjamini-
Hochberg will also be made by Holm-Bonferroni, or the opposite.

Solution: HB is more conservative. Looking at the plot from previous part, we
can see that threshold for Benjamini-Hochberg is always greater than or equal to
the threshold for Holm-Bonferroni for k ∈ {1, . . . , 20}. So if HB rejects a tests,
BH will definitely reject it as well since it will use a higher p-value threshold on
the same p-value.
We can show this mathematically. Let pBH,k and pHB,k be the threshold for
the BH and HB procedures on the kth p-value respectively. First we show that
∀k ∈ {1, . . . , 20} : pHB,k ≤ pBH,k:

α

21− k
≤ α

20
k

⇐⇒ 1

21− k
≤ 1

20
k

⇐⇒21− k ≥ 20

k
⇐⇒21k − k2 ≥ 20

⇐⇒k2 − 21k + 20 ≤ 0

⇐⇒(k − 1)(k − 20) ≤ 0

The last statement is true because k ∈ {1, . . . , 20}. Now let’s suppose p(k∗) is
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the last p-value we reject with the Holm-Bonferroni procedure. We have that:

p(k) ≤ pHB,k ∀k ∈ {1, . . . , k∗}

because we reject all the first k∗ test with Holm-Bonferroni. Using the result
above we have:

p(k) ≤ pBH,k ∀k ∈ {1, . . . , k∗}

since pHB,k ≤ pBH,k. This means if we reject the first k∗ test with Holm-
Bonferroni, we also reject them, and possibly more, with the Benjamini-Hochberg
procedure. So BH is less conservative and makes more discoveries.
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3. (9 points) Your friend has developed a new cancer detection algorithm based on imaging
and plans to evaluate its performance using an ROC curve. After testing the algorithm
on samples from many patients, your friend generates the following ROC curve with the
important points labeled with their corresponding (FPR, TPR). Throughout, assume
that a positive case corresponds to having cancer.

(a) (1 point) What are the FNR and TNR associated with point B?

Solution: FNR = 0.3 and TNR=0.4

(b) (2 points) Fill in the blanks below and explain your answer.

Among the points A, B, and C, is strictly better than .

Solution: C is strictly better than B. Because for the same FPR value, it has
a strictly higher TPR value.

(c) (3 points) It is possible to modify the algorithm and obtain the following ROC
curve instead. First, explain why the modified algorithm is better: in other words,
explain what measure we can use to make such a comparison. Second, describe how
we can obtain the improved ROC curve using the algorithm which generated the
ROC curve in parts (a), (b).

Solution: The modified algorithm has a higher AUC and its ROC is strictly
above the original ROC. In other words, TPRmodified ≥ TPRoriginal at all values
of FPR with strictly inequality at some FPR values.
One can obtain the modified ROC by ignoring all thresholds between points A
and B and instead using the decision from point A with probability p or point
C with probability (1 − p). Changing the value of p will lead to the ROC line
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segment between points A and C. The TPR and FPR on that line segment has
the following form for p ∈ [0, 1]:

TPR = p ∗ TPRA + (1− p) ∗ TPRC

FPR = p ∗ FPRA + (1− p) ∗ FPRC
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(d) (3 points) A hospital looks into using this algorithm, and determines the cost of
incorrectly classifying a cancer patient as not having cancer is $1000, whereas the
cost of incorrectly classifying a non-cancer patient as having cancer $100. What
should the baseline prevalence of cancer be such that you are indifferent between
points A and B in the modified ROC curve from part (c)?

Solution: Let P (cancer) = π

π × 0.5× 1000 + (1− π)× 0.2× 100 = π × 0.1× 1000 + (1− π)× 0.6× 100

5π + 0.2(1− π) = π + 0.6(1− π)

4π = 0.4(1− π)

π =
1

11
≈ 0.091
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4. (10 points) Joe has landed a summer internship job in a customer service department.
His job is to model the number of complaints received per week. He obtains data
corresponding to n weeks {x1, x2, . . . , xn} where xi is the number of complaints received
in week i. Each xi follows a Poisson distribution with parameter λ:

xi ∼ Poisson(λ)

The PMF of a Poisson random variable with parameter λ is: P (x = k) = λke−λ

k!
. You

can assume that the number of complaints received in different weeks are independent
of each other: xi ⊥⊥ xj ∀i ̸= j.

(a) (2 points) Suppose he wants to conduct the following hypothesis test:

H0 : λ = λ1

H1 : λ = λ2

where λ2 > λ1. He needs to fix his significance level at α. Find the decision rule
of the most powerful test for his problem. Your decision rule should fill in the
blank in the following sentence with a mathematical expression that depends on
x1, . . . , xn, α, λ1, λ2 and other constants: “If , then reject the
null hypothesis”.
Hint: you don’t need to simplify your expression or solve for the exact rejection
threshold: you can just express it as a function that depends on the constant(s).
Make sure you specify which constant(s) affects the threshold.

Solution:

Λ =
P (x;λ1)

P (x;λ2)

=
n∏

i=1

λ
xi
1 e−λ1

xi!

λ
xi
2 e−λ2

xi!

=
n∏

i=1

(
λ1

λ2

)xieλ2−λ1

Reject if Λ > η

where η is the rejection threshold which depends on λ1 and more importantly
significance level α. It is easier to work with log likelihood ratio:

log Λ =
n∑

i=1

xi log(
λ1

λ2

) + (λ2 − λ1)

Reject if
n∑

i=1

xi >
log(η) + n(λ2 − λ1)

log(λ2)− log(λ1)

where constant η depends on λ1 and more importantly α
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(b) (2 points) Derive the Maximum Likelihood Estimator for λ.

Solution:

L(X1, . . . , XN ; λ) =
n∏

i=1

λXie−λ

Xi!
=

λ
∑n

i=1 Xie−nλ∏n
i=1Xi!

ℓ(X1, . . . , XN ; λ) =
n∑

i=1

Xi log λ− nλ−
n∑

i=1

logXi!

∂

∂λ
ℓ(X1, . . . , XN ; λ) =

∑n
i=1Xi

λ
− n∑n

i=1Xi

λ̂MLE

− n = 0

=⇒ λ̂MLE =

∑n
i=1Xi

n

(c) (1 point) Joe asks for your help to set up the problem from a Bayesian perspective.
He makes the following choices:

• λ is distributed according to a Gamma distribution with parameters α > 0 and
β > 0: λ ∼ Gamma(α, β).

• Each xi is still distributed according to a Poisson with parameter λ and is
conditionally independent of other xj’s given λ.

Draw the graphical model for the setup above.

Solution:
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(d) (2 points) Using the Bayesian model in the previous part, derive the posterior dis-
tribution for λ after observing {x1, . . . , xn}. The PDF of a Gamma distribution
with parameters α and β has the following form:

p(y;α, β) =
βα

Γ(α)
yα−1e−βy

where Γ(α) is a function that depends on α which is a constant here. The reference
sheet includes more information on the Gamma distribution.
Hint: you should work with the unnormalized posterior which is proportional to the
true posterior. You don’t need to carry over the constants.

Solution:

λ|{x1, . . . , xn} ∼ Gamma(α +
n∑

i=1

xi, β + n)

In other words, Gamma distribution is the conjugate prior for a Poisson likeli-
hood.

(e) (2 points) Using the posterior distribution from the previous part, find the MAP
and MMSE estimate of λ.

Solution: MAP is the mode of the Gamma posterior and MMSE is its expected
value.

λ̂MAP =
α +

∑n
i=1 xi − 1

β + n

λ̂MMSE =
α +

∑n
i=1 xi

β + n
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(f) (1 point) Compare the MMSE estimate from previous part with the MLE from
above. Are they identical? If not, when would they become identical?

Solution: The prior makes the two estimates different, but as we get more
samples (n → ∞) the weight of prior becomes smaller and λ̂MMSE → λ̂MLE.
This makes sense as data size grows, the weight of prior on our posterior becomes
less and less. In the limit case where data grows infinitely, prior has no impact
and our MAP decision is solely based on Likelihood which depends solely on
data. In that case maximizing the posterior (MAP) is the same as maximizing
the likelihood (MLE).
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5. (8 points) Consider the following model with unknown variables λ and µ, observed vari-
ables x1, . . . , xn and known constants α and β

λ ∼ Gamma(α, β)

µ | λ ∼ Exponential(λ)

xi | µ, λ ∼ N (µ, λ2)

(a) (1 point) For this part only, suppose n = 2. Draw a graphical model for the
variables described above.

Solution:

(b) (3 points) The following pseudocode provides a description of Gibbs sampling, but
it contains exactly two mistakes. Circle each mistake, and in the space below, write
the correct version (if the correction is just to remove the circled part, just write
“remove only”)

Hint: the fixes involve removing or changing part of the algorithm: no moving
around is necessary.

(a) Compute the distributions p(λ|µ) and p(µ|λ, x1, . . . , xn)

(b) Initialize the following variables to zero: λ, µ, x1, . . . , xn

(c) Repeat the following steps until enough samples have been obtained:

(i) Using the current values of λ and x1, . . . , xn, draw a sample for µ from the
conditional distribution in step (a).

(ii) Using the current values of µ and x1, . . . , xn, draw a sample for λ from the
other conditional distribution in step (a).

(iii) Save the current values of λ and µ as samples.
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Solution: First mistake: in part (a), conditional distribution of λ should also
depend on the data: p(λ|µ, x1, . . . , xn)
Second mistake: in part (b), we don’t change or initialize the values of data we
received. We keep them fixed throughtout the whole process and only initialize
the unnknown variables: “Initialize the following variables to zero: λ, µ”. Ide-
ally, we could also “initialize λ, µ to random values, positive for λ”, not zero
necessarily.

(c) (2 points) In step c-(ii) of the Gibbs sampling procedure above, we need to obtain
a new sample for λ. Choose the single most efficient sampling algorithm to use to
approximate the distribution for λ, or if sampling is not necessary, select option C.
Ensure to justify your answer.

⃝ A. Rejection sampling

⃝ B. Metropolis-Hastings

⃝ C. Sampling is not necessary

Solution: The posterior of λ conditioned on µ and x’s has no closed form
solution mainly because λ is dependent on both variables at the same time.
We need to use a sampling method to approximate the posterior. Metropolis-
Hasting is usually a better choice since it is more efficient with higher acceptance
rate.

(d) (2 points) Suppose we notice we have made a mistake in our model and the variance
of each x is actually a known constant σ2. In other words, our new model is:

λ ∼ Gamma(α, β)

µ | λ ∼ Exponential(λ)

xi | µ ∼ N (µ, σ2)

with unknown variables λ and µ, observed variables x1, . . . , xn and known constants
α, β and σ2.
Now under this new model, what is the most efficient algorithm for sampling λ in
step c-(ii) of the Gibbs sampling procedure above? Ensure to justify your answer.

⃝ A. Rejection sampling

⃝ B. Metropolis-Hastings

⃝ C. Sampling is not necessary

Solution: Now the link between X and λ is broken. The posterior of λ only
depends on µ. But Gamma distribution is the conjugate prior for Exponential
likelihood of µ. So P (λ|µ) is also Gamma distributed with known parameters.
Thus, the distribution of λ in step c-(i) is exactly known and there is no need
for approximate sampling.
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Midterm 1 Reference Sheet

Algorithm 1 The Benjamini-Hochberg Procedure

input: FDR level α, set of n p-values P1, . . . , Pn

Sort the p-values P1, . . . , Pn in non-decreasing order P(1) ≤ P(2) ≤ · · · ≤ P(n)

Find K = max{i ∈ {1, . . . , n} : P(i) ≤ α
n
i}

Reject the null hypotheses (declare discoveries) corresponding to P(1), . . . , P(K)

Useful Distributions:

Distribution Support PDF/PMF Mean Variance Mode

X ∼ Poisson(λ) k = 0, 1, 2, . . . λke−λ

k!
λ λ ⌊λ⌋

X ∼ Gamma(α, β) x ≥ 0 βα

Γ(α)
xα−1e−βx α

β
α
β2

α−1
β

X ∼ N (µ, σ2) x ∈ R 1
σ
√
2π

exp
(
−1

2

(
x−µ
σ

)2 )
µ σ2 µ

X ∼ Exponential(λ) x ≥ 0 λ exp(−λx) 1
λ

1
λ2 0

Conjugate Priors: For observations xi, i = 1, . . . , n:

Likelihood Prior Posterior

xi|θ ∼ Bernoulli(θ) θ ∼ Beta(α, β) θ|x1:n ∼ Beta (α +
∑

i xi, β +
∑

i(1− xi))

xi|µ ∼ N (µ, σ2) µ ∼ N (µ0, 1) µ|x1:n ∼ N
(

σ2

σ2+n

(
µ0 +

1
σ2

∑
i xi

)
, σ2

σ2+n

)
xi|λ ∼ Exponential(λ) λ ∼ Gamma(α, β) λ|x1:n ∼ Gamma (α + n, β +

∑
i xi)

Generalized Linear Models

Regression Inverse link function Likelihood

Linear identity Gaussian
Logistic sigmoid Bernoulli
Poisson exponential Poisson
Negative binomial exponential Negative binomial

Sigmoid function: σ(x) =
1

1 + e−x


