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1. (10 points) For each of the following, answer true or false. Circle T for true and F
for false. You don’t need to justify your answer.

(a) (1 point) ( T / F ) In the case of a simple null H0 : θ = θ0 and a simple
alternative H1 : θ = θ1, the Neyman-Pearson lemma tells us the form of the test
that has highest true positive rate, subject to a false positive rate being at most
some value.

Solution: True

(b) (1 point) ( T / F ) When we apply Ordinary Least Squares for linear regression,
adding more data points always strictly increases the sum of the squared errors with
respect to the regression line.

Solution: False. The added data points will give zero error if they are perfectly
on the regression line!

(c) (1 point) ( T / F ) Under the null hypothesis, the p-values are uniformly
distributed.

Solution: True

(d) (1 point) ( T / F ) The Bonferroni correction controls the family-wise error
rate only when all the p-values are independent of each other.

Solution: False. The Bonferroni correction does not require any assumptions
about dependence among the p-values or about how many of the null hypotheses
are true.

(e) (1 point) ( T / F ) The Gauss-Markov theorem assumes the errors of a linear
regression model are identically distributed.

Solution: False.

(f) (1 point) ( T / F ) When running Metropolis-Hastings, the value of the next
sample is dependent on values of samples we generated before it.

Solution: False, it is only dependent on the one right before it.

(g) (1 point) ( T / F ) Let fθ0(X) and fθ1(X) denote the likelihoods of the data
X under the null and alternative distributions, respectively. Suppose θ0 < θ1 and

we accept the null when
fθ0 (X)

fθ1 (X)
> η. If we want to create the test with the highest

true positive rate, subject to the false positive rate being at most α, the threshold

η must be the value such that Pr(
fθ0 (X)

fθ1 (X)
≤ η | H0) = α.
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Solution: True. This is what the Neyman-Pearson Lemma states.

(h) (1 point) ( T / F ) Any point underneath a convex ROC curve (with false
positive rate on the x axis and true positive rate on the y axis) is achievable by
probabilistically choosing between two decision rules that lie on the ROC curve for
each input sample.

Solution: False. Only convex combinations of points on an ROC curve are
achievable this way, so for a convex ROC curve anything under the line y = x
is not achievable this way. (We went over this in Discussion 01.)

(i) (1 point) ( T / F ) In any binary classification problem, it is always possible to
create a classifier that achieves a FPR of 0 by classifying every instance as positive.

Solution: False. The false positive rate is equal to FP
FP+TN

. In order to guaran-
tee a 0 FPR, we need FP to equal 0. We need to predict everything as negative
to get no false positives.

(j) (1 point) ( T / F ) Assume:

w(i) ∼ Beta(3, 5)

z(i) ∼ N(0, w(i))

y(i) = 〈β∗, x(i)〉+ cos(x(i)) · z(i)

where the z(i) are independent of each other. The Gauss-Markov theorem allows us
to conclude that β̂, the OLS estimator, is an unbiased estimate of β∗.

Solution: True. All assumptions of the Gauss-Markov theorem needed to con-
clude unbiasedness of the OLS estimator are satisfied.
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2. (10 points) In our discussion of multiple hypothesis testing and the reproducibility crisis
in science, we saw that it is not uncommon for practitioners to misinterpret the results
of their hypothesis tests. In this problem, we will calculate some metrics related to hy-
pothesis testing which will highlight some limitations of p-values, and then explore the
behavior of commonly-used quantities in multiple hypothesis testing problems.

(a) (4 points) Suppose we are running a single binary hypothesis test. Denote byH = 0
that the null hypothesis is true, and by H = 1 that the alternative is true. Further,
let X denote our observed data, let p(X) be the corresponding p-value for our test,
and let δ be our decision rule. We choose to reject the null hypothesis (which
corresponds to δ(X) = 1) if p(X) ≤ α = 0.05; otherwise, we fail to reject the null
(δ(X) = 0). Although we often do not know these things in practice, suppose that
we also knew the following pieces of information:

1. The prior probability of a true effect: P(H = 1) = 0.1;

2. The true positive rate of our testing procedure: P(δ(X) = 1 | H = 1) = 0.5.

Calculate the posterior probability that the null hypothesis is true given that we
reject the null hypothesis. Explain (in roughly 1 sentence) why this probability is
not the same as the p-value.

Solution: Using Bayes’ rule,

P(H = 0 | δ(X) = 1)

=
P(δ(X) = 1 | H = 0)P(H = 0)

P(δ(X) = 1)

=
P(δ(X) = 1 | H = 0)P(H = 0)

P(δ(X) = 1 | H = 0)P(H = 0) + P(δ(X) = 1 | H = 1)P(H = 1)

=
P(p(X) ≤ 0.05 | H = 0)(1− P(H = 1))

P(p(X) ≤ 0.05 | H = 0)(1− P(H = 1)) + P(δ(X) = 1 | H = 1)P(H = 1)

=
0.05 · 0.9

0.05 · 0.9 + 0.5 · 0.1
≈ 0.47

� 0.05.

The p-value is often misinterpreted as the probability that the null hypothesis
is true given the data. However, the p-value gives the probability under the null
of seeing data as or more extreme that the data we observed. Thus, a small
p-value can be thought of as providing evidence against the null hypothesis, but
it does not actually quantify our belief that the null hypothesis is true based on
the observed data. This is captured by the posterior probability that the null is
true, which also takes into account the prior probability of nulls and the power
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of the test. This posterior probability precisely quantifies our belief that the
null hypothesis is true given that the observed p-value is small.
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(b) (2 points) Suppose we are running a single binary hypothesis test in the same
setting as part (a). We would like to avoid being part of the reproducibility crisis,
and thus are interested in understanding the chances that our discovery is real.
Calculate the posterior probability that the alternative hypothesis is true given
that we reject the null hypothesis. Explain (in roughly 1 sentence) why this is not
the same as 1− 0.05 = 0.95.

Solution: We could solve this by either using

1− solution in part (a)

or by using Bayes’ rule,

P(H = 1 | δ(X) = 1)

=
P(δ(X) = 1 | H = 1)P(H = 1)

P(δ(X) = 1)

=
P(δ(X) = 1 | H = 1)P(H = 1)

P(δ(X) = 1 | H = 0)P(H = 0) + P(δ(X) = 1 | H = 1)P(H = 1)

=
P(δ(X) = 1 | H = 1)P(H = 1)

P(p(X) ≤ 0.05 | H = 0)(1− P(H = 1)) + P(δ(X) = 1 | H = 1)P(H = 1)

=
0.5 · 0.1

0.05 · 0.9 + 0.5 · 0.1
≈ 0.53

� 0.95.

Testing at level 0.05 guarantees that whenever reality is truly null our test has
a high probability of not rejecting (e.g. P(δ(X) = 0|H = 0) ≥ 0.95). This
is not the same as a guarantee that whenever our test rejects, the alternative
hypothesis is true with a high probability (e.g. P(H = 1 | δ(X) = 1)).
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(c) (4 points) Suppose now that, instead of testing a single hypothesis, we are running
m > 1 independent binary hypothesis tests, Hi. Suppose as well that the prior
probability of a true effect is now P(Hi = 1) = 0; that is, all of the hypotheses are
truly null. Show that in this setting, the family-wise error rate (probability of mak-
ing at least one false discovery) and the false discovery rate (expected proportion
of false discoveries) are equal.

Note: By convention, the proportion of false discoveries = 0
0

= 0 when the total
number of discoveries is 0.

Solution: Let F be the number of false discoveries and T be the total number
of discoveries. Since all the hypotheses are truly null, any discovery is a false
discovery. This means that F = T always holds. Therefore,

FDR = 0 ∗ P
(
F

T
= 0

)
+ 1 ∗ P

(
F

T
= 1

)
= P(F ≥ 1)

= FWER.

An alternative way to derive the relationship is to use an indicator random
variable:

FDR = E
[
F

T

]
= E [1{F ≥ 1}]
= P(F ≥ 1)

= FWER.
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3. (10 points) Graphical models are often useful for modeling phenomena involving mul-
tiple variables. In this problem, you’ll formulate a graphical model, then demonstrate
how to sample from the posterior using Gibbs sampling.

(a) (2 points) Consider the following scenario: suppose the probability that a burglar
breaks into your car is πb, and the probability that an innocent passerby accidentally
touches your car is πi. Let Zb be a binary random variable that is 1 if there is a
burglar, and 0 otherwise. Likewise, let Zi be a binary random variable that is 1 if
there is an innocent passerby, and 0 otherwise. Suppose Zb and Zi are independent
of each other.

Let X be a binary random variable that is 1 if your car alarm goes off. The
probability your car alarm goes off depends on Zb and Zi, and is known to be:

P(X = 1 | Zb, Zi) Zb Zi
0 0 0

0.1 0 1
0.95 1 0
0.99 1 1

Draw the graphical model that describes the direct relationships between πb, πi, Zb,
Zi, and X.

Solution:

πb

Zb

πi

Zi

X
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(b) (5 points) Suppose you know the parameters πb and πi, as well as P(X = 1 | Zb, Zi)
as specified in Part (a). X is the observed variable, and Zi and Zb are the latent
(unobserved) variables. We want to sample from P(Zi, Zb | X, πb, πi), the posterior
over the latent variables conditioned on everything else. We’ll use Gibbs sampling
to do this.

(i) Suppose we are running Gibbs sampling, and on each iteration we sample Zb
first then Zi. We observed X = 0, and the values of Zb and Zi from iteration t are
Z

(t)
b = 0 and Z

(t)
i = 1.

Derive the distribution used for the Gibbs sampling update of Z
(t+1)
b . Your solution

should be in terms of πb, πi, and constants.

Solution: For the Gibbs sampling update of Z
(t+1)
b , we have

P(Zb | Zi, X, πb, πi) =
P(Zb, Zi, X | πb, πi)
P(Zi, X | πb, πi)

=
P(X | Zb, Zi, πb, πi)P(Zb, Zi | πb, πi)

P(Zi, X | πb, πi)

=
P(X | Zb, Zi)P(Zb | πb)P(Zi | πi)

P(Zi, X | πb, πi)

=
P(X | Zb, Zi)P(Zb | πb)P(Zi | πi)∑

z∈{0,1} P(Zb = z, Zi, X | πb, πi)

=
P(X | Zb, Zi)P(Zb | πb)P(Zi | πi)∑

z∈{0,1} P(X | Zb = z, Zi)P(Zb = z | πb)P(Zi | πi)
.

Now we plug in the specific values given in the problem, including X = 0 and
Zi = Z

(t)
i = 1. Since Zb is a binary random variable, to find its distribution

we can just find P(Zb = 1 | Zi = 1, X = 0, πb, πi). Plugging in the values of
P(X | Zb = 1, Zi = 1) given in Part (a), and P(Zb = 1) = πb and P(Zi = 1) = πi,
we have

P(Zb = 1 | Zi = 1, X = 0, πb, πi)

=
P(X = 0 | Zb = 1, Zi = 1)P(Zb = 1 | πb)P(Zi = 1 | πi)∑

z∈{0,1} P(X = 0 | Zb = z, Zi = 1)P(Zb = z | πb)P(Zi = 1 | πi)

=
0.01 · πbπi

0.9 · (1− πb) · πi + 0.01 · πbπi
.

That is, Z
(t+1)
b is a Bernoulli random variable with probability of one equal to

0.01 · πbπi
0.9 · (1− πb) · πi + 0.01 · πbπi

.
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(ii) Now, suppose we draw Z
(t+1)
b = 1 from the distribution derived in Part (b.i).

Derive the distribution used for the Gibbs sampling update of Z
(t+1)
i . Your solution

should be in terms of πb, πi, and constants.

Solution:

By the same reasoning as Part (b.i), for the Gibbs sampling update of Z
(t+1)
i

we can focus on finding P(Zi = 1 | Zb = 1, X = 0, πb, πi) (since we drew

Z
(t+1)
b = 1):

P(Zi = 1 | Zb = 1, X = 0, πb, πi)

=
P(X = 0 | Zb = 1, Zi = 1)P(Zb = 1 | πb)P(Zi = 1 | πi)∑

z∈{0,1} P(X = 0 | Zb = 1, Zi = z)P(Zi = z | πi)P(Zb = 1 | πb)

=
0.01 · πbπi

0.05 · (1− πi)πb + 0.01 · πbπi
.
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4. (10 points) In this question, we will be working with ROC curves and fairness.

(a) (2 points) First, we will plot a single point on an ROC curve. Let Y ∈ {0, 1} be a
binary target, and let X ∈ R be a single feature used to predict Y . Consider the
function f(X) = eX

eX+1
. Suppose “Dataset A” contains six samples of X, Y, f(X),

shown in Table 1 below.

Table 1: Dataset A samples
Y f(X) X
0 0.1 -2.197
1 0.2 -1.386
0 0.4 -0.405
1 0.7 1.386
1 0.9 2.197
0 0.95 2.944

Suppose we have a decision rule,

δt(X) =

{
1 if f(X) > t

0 if f(X) ≤ t

If we choose the decision threshold t = 0.5, what is the empirical true positive rate
and the empirical false positive rate for the decision rule δt(X) on “Dataset A”
above? In addition to calculating the true positive rate and false positive rate, plot
the single point on the blank ROC curve below that corresponds to the decision rule
δt(X) with decision threshold t = 0.5. You should both (i) write down numerical
values for true positive rate and false positive rate, and (ii) draw a point in the plot.

Blank ROC curve: plot your answer here (you only need to plot a single
point). If writing answers on a separate sheet of paper, you may also copy this
blank plot (with title and axes) onto your answer sheet, and plot your answer there.
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ROC curve for “Dataset A”
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Solution:

TPR =
# true positives

# positives
=

2

3

FPR =
# false positives

# negatives
=

1

3
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ROC curve for “Dataset A”
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(b) (2 points) Now suppose that we have a different “Dataset B”, where we again have
samples of X, Y, f(X) (similar to part (a)). Let δt(X) be defined as in part (a). This
time, we want to choose a single decision threshold t that maximizes the accuracy
of the decision rule δt(X), where

accuracy = (true positive rate) ∗ (fraction of positives)

+ (true negative rate) ∗ (fraction of negatives).

Suppose “Dataset B” has the following ROC curve:
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ROC curve for “Dataset B”

Each mark “×” represents the TPR and FPR for a single threshold t0, t1, t2, or t3,
labeled on the plot.

Suppose that for Dataset B, (fraction of positives) = (fraction of negatives) = 0.5.

Which of the decision thresholds (t0, t1, t2, or t3) yields a decision rule with the
highest accuracy? What is the accuracy for the decision threshold you chose?

Solution: t2 has the highest accuracy, which is 0.5 ∗ 0.8 + 0.5 ∗ 0.6 = 0.7.

To find this, observe that accuracy = 0.5 ∗TPR + 0.5 ∗ (1−FPR). This implies
that TPR = FPR − 1 + 2 ∗ accuracy. This describes level sets of (TPR, FPR)
pairs that have the same accuracies: for example, all points (TPR, FPR) on the
line TPR = FPR−1 have accuracy 0, and all points on the line TPR = FPR+1
have accuracy 1.

Out of the possible decision thresholds, the decision threshold corresponding to
the point on a line of slope 1 with the highest intercept is t2, so t2 must be the
threshold that achieves the highest accuracy.

The students could also calculate the accuracies for each of the thresholds using
brute force.
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(c) (6 points) Now suppose we have a third dataset, “Dataset C”. Dataset C has sam-
ples of X, Y, f(X) (similar to Datasets A and B), but also includes an additional
variable Z ∈ {a, b} that marks group membership. If Z = a, the data point belongs
to group a, and if Z = b, the data point belongs to group b.

The following plot shows the ROC curves for each group:
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ROC curve for “Dataset C”

group a
group b

Suppose we are choosing group dependent thresholds ta and tb (that is, we have
decision rule δta(X) for group a, and decision rule δtb(X) for group b, where δt(X)
is defined as in part (a)).

(i) What is the maximum accuracy achievable in each group via group dependent
thresholds ta and tb? Suppose as in part (b) that for each group, (fraction of positives)
= (fraction of negatives) = 0.5. (Your solution should be two numbers. One accu-
racy number for each group.)

(ii) Suppose group a makes up 70% of the dataset and group b makes up 30% of the
dataset. What is the overall accuracy of the classifier from part (i) on the whole
dataset? (The answer is one accuracy number.)

(iii) Now determine the maximum accuracy on the whole dataset of a classifier that
satisfies error rate parity. Recall, error rate parity requires the classifier to have the
same TPR in both groups and the same FPR in both groups. (The answer is one
number. The classifier may use group dependent thresholds.)

Solution:

(i) For group a, the maximum accuracy achievable is 0.6 ∗ 0.5 + 0.9 ∗ 0.5 = 0.75.
For group b, the maximum accuracy achievable is 0.5 ∗ 0.9 + 0.5 ∗ 0.5 = 0.7.

(ii) The overall accuracy is 0.7 ∗ 0.75 + 0.3 ∗ 0.7 = 0.735

(iii) As shown in Lecture 05 (link to scribe notes), any point that lies under all
individual group ROC curves is a possible point where group dependent decision
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rules (possibly stochastic) can be chosen to achieve error rate parity. The point
under both curves with the maximum accuracy is the point (0.3, 0.7). The point
(0.3, 0.7) has accuracy 0.5 ∗ 0.7 + 0.5 ∗ 0.7 = 0.7.
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