Data 102 Spring 2022 Lecture 23

Bandits I

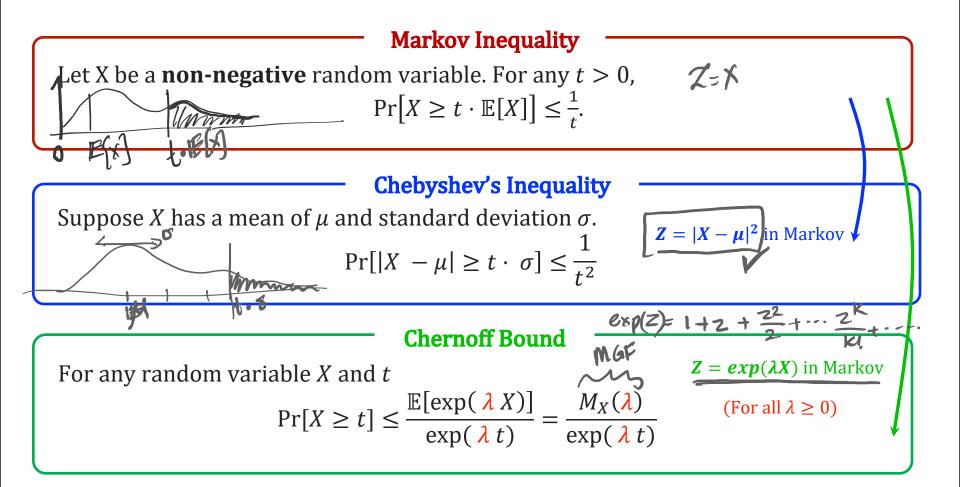
These slides are linked to from the course website, data102.org/sp22

Weekly Outline

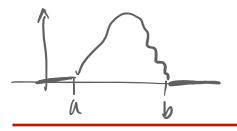
- Last lecture: Concentration inequality.
 - How close are expectation to reality most of the time?
 - Markov, Chebyshev, Chernoff, Hoeffding, ...
- This and next lecture: Multi-armed bandits.
 - Application of concentration inequalities to decision making
- Next up: Robustness

Announcements

- Homework 5 is due this Friday
- Vitamin will be released after class
- Midterm 2 is next Thursday
 - Includes today's material.
- More info about extra credit and expectations for passing grades will be posted on Ed.



MGFs for bounded random variables



Hoeffding's Lemma

Consider any random variable *X* whose mean is 0 and is bounded *i.e.*, $X \in [a, b]$ $M_X(\lambda) \coloneqq \mathbb{E}[\exp(\lambda X)] \le \exp\left(\frac{(b-a)^2}{8}\lambda^2\right)$

Implications of this when applied to Chernoff bound

$$\Pr[X \ge t] \le \frac{M_X(\lambda)}{\exp(\lambda t)} = \frac{\exp\left(\frac{(b-a)^2}{8}\lambda^2\right)}{\exp(\lambda t)} = \exp\left(\frac{(b-a)^2}{8}\lambda^2 - \lambda t\right)$$

$$\begin{aligned} & \texttt{F}\left[e_{\mathsf{KP}}\left(\lambda S\right)\right] = \texttt{F}\left[e_{\mathsf{K}}\left(\underline{\lambda}, \sum_{k \in \mathcal{M}}\right)\right] \longrightarrow \mathsf{Mult}\mathsf{Pleader} \qquad \mathsf{Product} \texttt{ef} \underbrace{e_{\mathsf{KP}}}_{\mathsf{I}} \mathsf{e} \\ & \mathsf{Hoeffding's Inequality} \end{aligned} \right] \\ & \mathsf{Consider random variable } X_1, \dots X_n \text{ be i.i.d independent vandom variables with} \\ & \mathsf{mean} \mu \text{ and bounded between } a \text{ and } b. \mathsf{Then} \qquad \mathsf{Leck s} \underbrace{\mathsf{Uac}}_{\mathsf{I}} a \mathsf{Grassesims} \underbrace{\mathsf{fail}}_{\mathsf{I}} \\ & \overline{\mu} - \mu > \mathsf{t} \quad \mathsf{Pr}\left[\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu) \geq \mathsf{t}\right] \leq \exp\left(-\frac{2nt^2}{(b-a)^2}\right) \qquad \mathsf{Nret} \underbrace{\mathsf{L}}_{\mathsf{K}} \times \mathsf{G}_{\mathsf{I}} \\ & \mathsf{Ind} \qquad \mathcal{M} - \mu > \mathsf{t} \quad \mathsf{Pr}\left[\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu) \leq -t\right] \leq \exp\left(-\frac{2nt^2}{(b-a)^2}\right). \end{aligned} \end{aligned}$$
Proof idea:
1. Let S = $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)$ be the variable of interest.
2. Compute $\mathsf{MGC}, M_S(\lambda).$
> Independence should help decompose $M_S(\lambda)$ to $M_{X_i-\mu}(\lambda)s.$
 $\mathsf{M} = \frac{1}{n} \leq_{\mathsf{X}_1} \mathsf{L}$
 $\mathsf{M}_{X_i-\mu}(\lambda)s$ are bounded by Hoeffing's Lemma
3. Put this in Chernoff inequality and optimize for $\lambda.$

1. Let
$$S = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)$$
 be the variable of interest.
2. Compute MFG, $M_S(\lambda)$.
 \Rightarrow Independence should help decompose $M_S(\lambda)$ to $M_{X_i - \mu}(\lambda)$ s.
 $\Rightarrow M_{X_i - \mu}(\lambda)$ s are bounded by Hoeffing's Lemma
3. Put this in Chernoff inequality and optimize for λ .
 $M_S(\lambda) = \mathbb{E}\left[\exp(\lambda S)\right] = \mathbb{E}\left[\exp(\lambda S)\right] = \mathbb{E}\left[\exp(\lambda S, 1)\right] =$

.

$$\int_{n=1}^{2nd} \int_{n=1}^{n} \int_$$

M, E, Failure prob. Applying Hoeffding's Inequality X:-1 X:0 A region of area *p* in a square of area 1. Throw *m* rocks uniformly in the square. How many rocks (k) fall in the triangle? OW many FOCKS (N) $Pr\left[\left|\frac{k}{m} - p\right| > \epsilon\right] \leq 2 \exp(-2m\epsilon^2)$ $= 2 \cdot 28 \quad \text{when} \quad m = 100 \quad \xi = 0.1$ If m = 100 and $\epsilon = 0.1$ $\rightarrow \frac{k}{r}$ is within 0.1 of *p*, with high probability of 72%. $0.72 : 1 - 2exp(-2x 100x(0.0)^2)$ Success with 72 to be close in 0.1 = 3 you need M > 100.

Applying Hoeffding's Inequality

Confidence Interval: Sample *m* times from a distribution over [0,1]. And take their average $\overline{\mu}$. How close is $\overline{\mu}$ to the true mean μ ?

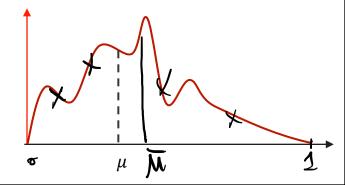
$$\Pr[|\mu - \bar{\mu}| > \epsilon] \le 2 \exp(-2m\epsilon^2)$$

90% confidence interval:

- If m = 100, then $[\bar{\mu} 0.12, \bar{\mu} + 0.12]$ is a 90% confidence interval.
- i.e, $\mu \in [\overline{\mu} 0.12]$, $\overline{\mu} + 0.12$] with 90% probability.

$$2 \exp(-2m\varepsilon^2) = 0.1$$

$$m = 100 \implies \varepsilon = 0.1$$



G,

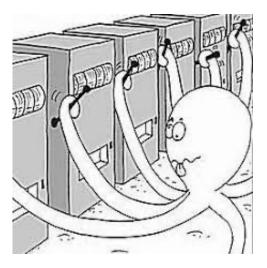
Multi-armed bandits

You step into a casino, and you see k slot machines.

For each machine *i*, every time you use the machine you get a random payoff, whose expectation is μ_i .

You don't know μ_i 's, so you don't know the best machine.

How should you use these machines to get the most payoff?



Multi-armed bandits, the non-gamblers' edition

Your new go-to restaurant has k dishes.

- 1. Each dish has an unknown μ_i : deliciousness
- 2. When you order a dish, you experience $\mu_i + noise$.
- 3. How do you select order?

3,2

Challenges:

- 1. No try, no information
- 2. Tradeoff: Exploration versus Exploitation
- 3. There is noise (or stochasticity) in the outcomes.

Other Examples

Advertising.

Oil drilling.

A/B testing: Market researching two options.

What are some examples you can think about?

Mathematical Setup:

There are *k* arms:

- Each arm *i* has a "payoff distribution" P_i , with mean μ_i .
- μ_i s are unknown p_i are unknown . At every round t = 1, 2, ..., T
- You pull one arm i_t .
- You observed $X_t \sim P_{i_t}$.

Hypothetically, if you knew $i^* = \arg \max \mu_i$ you should keep pulling that. $I \in \{ w_i \} \in \mathcal{M} \} = \mathcal{M} := \mathcal{M}$

<u>Goal: Collect as much expected reward as possible compared to the best arm:</u>

Comparison to Regression

Logistic Regression

All data is given ahead of time → Called Batch / Offline

Has features *x* and values *y*.

Multi-armed bandits

Data is collected as we go
→ Called Sequential / Online

No features, just values

- \rightarrow There is a version of bandits with features
- → Called **contextual bandits**

Demo

Optimistic view.

Upper Confidence Bound (UCB) Algorithm

Idea: Pull the arm that has the highest "upper" confidence bound. $UCB_i(t) =$ upper confidence bound for arm *i* in round *t* $UCB_i(t) = 0$ and t = 0 and t = 0 $UCB_i(t)$. How do we compute the upper confidence bound?

- Recall Hoeffding!
- Let $T_i(t)$: # of times arm *i* has been pulled up to time *t*.
- Let $\hat{\mu}_i(t)$: average of the observed rewards on arm *i* in those $T_i(t)$ pulls