Data 102 Spring 2022
Lecture 23

Bandits I




Weekly Outline

e Lastlecture: Concentration inequality.
o How close are expectation to reality most of the time?
o Markov, Chebyshev, Chernoff, Hoeffding, ...

e This and next lecture: Multi-armed bandits.
o Application of concentration inequalities to decision making

e Next up: Robustness




Announcements

e Homework 5 is due this Friday
Vitamin will be released after class

Midterm 2 is next Thursday
o Includes today’s material.

More info about extra credit and expectations for passing grades will be posted
on Ed.




r Markov Inequality
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Chernoff Bound
For any random variable X and t




MGFs for bounded random variables
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Hoeffding’s Lemma
Consider any random variable X whose mean is 0 and is bounded i.e., X € [a, b]
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e Hoeffding’s Inequality
Consider random variable X4, ... X, be i.i.d % andom variables with
mean u and bounded between a and b. Then Lok s Glae_ 2Crancsion foal;
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Proof idea:

1. LetS = 12" 1 (X;—u) be the variable of interest.

2. Compute MG M (1) !
= Independence should help decompose Mg (1) to My, u(/l)s
= My,_,(1)s are bounded by Hoeffing’s Lemma

3. Put this in Chernoff inequality and optimize for A.
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Hoeffding’s Inequality

Consider random variable X;, ... X;, be i.i.d independent random variables with
mean u and bounded between a and 4. Then
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My €, Suiluve p=¥;
Applying Hoeffding's Inequality = = c

A region of area p in a square of area 1. Throw m rocks uniformly

in the square. How many rocks (k) fall in the triangle?

Pr ——p >e] 2 exp(—2me?)

= 0.-28

If’;; =100 and@v = \o.s ¢ =0\

> % is within 0.1 of p, with high probability of 72%.
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Applying Hoeffding's Inequality v v

Confidence Interval: Sample m times from a distribution over [0,1]. And take their
average t. How close is i to the true mean u?

/—)
Prlu — ji] > €] < 2 exp(—2me?)

90% confidence interval:

 Ifm =100, then [t —0.12, i + 0.12] is a 90% confidence interval.
. pgp——— — . .

e e €[g—0.12,u+ 0.12] with 90% probability.
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Multi-armed bandits

You step into a casino, and you see k slot machines.

For each machine i, every time you use the machine you get
a random payoff, whose expectation is y;.

You don’t know y;’s, so you don’t know the best machine.

How should you use these machines to get the most payoff?




Multi-armed bandits, the non-gamblers’ edition

Your new go-to restaurant has k dishes.

1. Each dish has an unknown y;: deliciousness

2. When you order a dish, you experience yu; + noise.
3. Howdo you select order?

Y

-

=
i
=
=
C } \
— |
/

N

Challenges:

1. No try, no information

2. Tradeoff: Exploration versus Exploitation

3. There is noise (or stochasticity) in the outcomes.




Other Examples

Advertising.
Oil drilling.
A/B testing: Market researching two options.

What are some examples you can think about?




Mathematical Setup:

There are k arms:

e Each arm i has a “payoff distribution” P;, with mean ;.
e y;sareunknown ,P; owe wlimewA -
Ateveryroundt=1,2,..,T

e You pull one arm i,. Hypothetically, if you knew i* = argmax u; you
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Comparison to Regression

Logistic Regression

All data is given ahead of time
—> Called Batch / Offline

Has features x and values y.

Multi-armed bandits

Data is collected as we go
—> Called Sequential/ Online

No features, just values
- There is a version of bandits with features
—> C(Called contextual bandits




Demo
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Upper Confidence Bound (UCB) Algorithm

Idea: Pull the arm that has the highest “upper” confidence bound.
UCB;(t) = upper confidence bound for arm i in round ¢t

OB plg A de & Pl it omax (B
How do we compute the upper confidence bound?
e Recall Hoeffding! A\
s
e LetT;(t): # of times arm i has been pulled up to time t.
e Let;(t): average of the observed rewards arm [ in those T; (t) pulls

UCB;(t) = [;(t) + ;T( /‘/7 % = o0 if T;(t) = 0.
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