Data 102 Spring 2022 Lecture 22

Concentration Inequalities

These slides are linked to from the course website, data102.org/sp22

Weekly Outline

- Last week: Repeated decision making with feedback
 - Reinforcement learning

- This lecture: Concentration inequality.
 - How close are expectation to reality most of the time?

• Next up: Application of concentration inequalities to decision making.

Announcements

- Homework 5 is due this Friday
- Project proposals instructions and rubrics will go out today
- Midterm 2 is next Thursday
 - \circ More info on Ed soon,
 - Including material covered this week.
 - Start studying now and come to OH.
- More info coming on Thursday about extra credit and expectations for passing grades.

Expectation versus Reality

Question: There is a slot machine with a payout, whose expected value is \$5. Let's say p is the probability that the payout is \$100. What are the plausible values for *p*?

A) 2% / B) 4% (C) 5% D) 7% X
(c) plausible 96, purport 0, 5/, purport 100
$$= 5/$$

B) 4/, was purport 100, 1/, on parport 99, 1/, on parport 1, 94/, on parport 0
odt x 100 + 0.01 (99+1) + 0 = 5/
D not possible: $E[payent] = 2.07 \times 100 + --- = \int Pr(parport = t) \cdot t dt$
 $= 7 + --- > 5$
Fact Can bound $Pr(X > t)$ in terms of its expectation.

$$\frac{\int s}{Markov Inequality}$$
Let X be a non-negative random variable. For any $t > 0$,

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t} \checkmark$$
Alternatively,

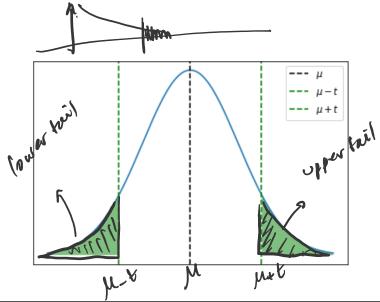
$$\Pr[X \ge t \cdot \mathbb{E}[X]] \le 1/t.$$

$$p_{\text{ref}} \circ f \quad Marka's \quad \text{incequality:}$$

$$\mathbb{E}[X] = \int P_{t}(\Lambda = t) \cdot t \quad dt > t \cdot P_{t}[X = t]$$

Concentration Inequalities Generally

Concentration inequalities provide bounds on how a random variable deviates from its mean.



Benefits:

 When X's distribution is unknown
 No closed-form for X's tail
 Result of complex combination of other random variables.

Interpretation of Markov's Inequality

Sum of Random Variables

Question: You have 10 coins with probabilities of coin flipping to head being p_1, p_2, \dots, p_{10} . Let's say $p_1 + p_2 + \dots + p_{10} = 1$. What's the maximum probability that all 10 coins come up heads, using Markov's inequality? What is the random variable all to come i i you are using? $X_1 = 4$ if Coin 4 Comes op heads $All of coins are heads, <math>Pr[Y > 10] \leq \frac{E[Y]}{10}$ $(\frac{1}{18})$ $E[Y] = E[X1] + \cdots E[X_{10}] = P_1 + P_2 + \cdots + P_{18} = (\frac{1}{10})^{10}$ Better baurd: Prob of all heads $P_1 \times P_2 \times \cdots \times P_n$ $P_1 = P_2 = \cdots = P_n = \frac{1}{10}$

Can we do any better?

Better Concentration Inequalities for sum of variables

Issues with Markov's inequality:

- Doesn't improve with summation independent sumes.
 → Law of large numbers implies that sum of random variables tends to a Gaussian distribution. Gaussians have small tail probabilities.
- \rightarrow We need to consider and leverage variance of random variables.
- \rightarrow Application of Markov with Linearity of Expectation in last slide doesn't leverage variance.

Leveraging Variance in Application of Markov Inequality

Chebychev's Inequality

Suppose *X* has a mean of μ and standard deviation σ . What is the

$$\Pr[|X - \mu| \ge t \cdot \sigma] \le ? \qquad \frac{1}{t^2}$$

Apply Markov's inequality to the non-negative variable $Z = (X - \mu)^2$ $\mathbb{E}[z] = \mathbb{E}[(X - \mu)^2] = \int_{-\infty}^{\infty} \sqrt{\alpha} r i \alpha n e.$ $\mathbb{P}_r[|X - \mu|] = \frac{1}{2}r[(X - \mu)^2] = \frac{1}{$

Revisiting Coin Flips: Applying Chebychev's Inequality

You have 10 coins with $p_1, p_2, ..., p_{10}$ of each coming up heads and $p_1 + p_2 + \cdots + p_{10} = 1$. What's the maximum probability that all 10 coins come up heads? X:= outcome of whether coin is heads. $Y = X_{1+--} + X_{10}$ $Var(X;) = Pi(1-Pi) \leq P;$

$$E[Y] = E[X_{1}]_{+} \longrightarrow E[X_{10}] = P_{1+--+} P_{10} = 1$$

$$Var(Y) = Var(X_{1})_{+} \longrightarrow +Var(X_{10}) \leq P_{1+}P_{2+} - P_{10} \leq 1$$

$$using independence$$

$$Chelogishe: Pr[Y_{-10}] = Pr[Y_{-1} > 9] \leq Pr[[Y_{-1}] > 9] \leq Pr[[Y_{-1}] > 9] \leq Pr[[Y_{-1}] > 9] \leq \frac{1}{92} = \frac{1}{91} Chelogisher$$

$$Iolead hand (\frac{1}{12})^{10} \qquad Markov \frac{1}{10} \qquad \leq \frac{1}{92} = \frac{1}{91} Chelogisher$$

Markov VS. $\Pr[X \ge t \cdot \mu] \le \frac{1}{t}$ Slower deaus Only Mean Z= (X-M) in Markon gives Cheloscher-

 $\Pr[|X - \mu| \ge t \cdot \sigma] \le \frac{1}{t^2}$ faster decous 1/12 Depends on Mean & Variance. La Grood for Surm/Averages/etc. independent random variable. Var (Sum) 48 larerage independence

Chebychev

Idea: Taking Markov and Chebychev to the next level! E[X] Chebychev's inequality $\Pr[|X - \mu| \ge t] \le \frac{\mathbb{E}[|X - \mu|^2]}{t^2}$ $Z = (X - \mu)^2$

 $\Pr[|X - \mu| \ge t] \le \frac{\mathbb{E}[|X - \mu|^3]}{t^3} \qquad Z = |X - \mu|^3 \text{ in Markov}$ $\Pr[|X - \mu| \ge t] \le \frac{\mathbb{E}[|X - \mu|^4]}{t^4} \qquad Z = |X - \mu|^4 \text{ in Markov}$

Alternatively, what if we consider $Z = \exp(X)$ or even $\exp(\lambda X)$? \Rightarrow At a high level, $\exp(\lambda X)$ includes all the higher powers (called moments) $\mathbb{E}\left(exp(z) = 1 + |z| + |\frac{1}{2}z^2| + |\frac{1}{6}z^3| + \dots + \frac{1}{k!}z^k + \dots + \frac{1}{$

 \rightarrow Markov together with MGF is called the Chernoff bound.

Chernoff Bound
For any random variable X and t

$$\Pr[X \ge t] \le \frac{\mathbb{E}[\exp(\lambda X)]}{\exp(\lambda t)} = \frac{M_X(\lambda)}{\exp(\lambda t)} \qquad \begin{array}{c} X \to \exp(X) t \\ \text{(For all } \lambda \ge 0) \\ \mathbb{E}[\exp(X)] \text{ small} \\ \mathbb{E}[\exp(X)] = \mathbb{E}\left[\exp(X_1 + \cdots + X_n)\right] = \mathbb{E}\left[\exp(X_2) \cdots \exp(X_2) \cdots \exp(X_n)\right] \\ \mathbb{E}\left[\exp(X_1) + \cdots + X_n\right] = \mathbb{E}\left[\exp(X_1) + \cdots + X_n\right] \\ \mathbb{E}\left[\exp(X) + \exp(X_2) \cdots \exp(X_n\right] \\ \mathbb{E}\left[\exp(X_1) + \cdots + X_n\right] = \mathbb{E}\left[\exp(X_1) + \cdots + X_n\right] \\ \mathbb{E}\left[\exp(X) + \exp(X_2) + \cdots + \exp(X_n\right] \\ \mathbb{E}\left[\exp(X_1) + \cdots + X_n\right] = \mathbb{E}\left[\exp(X_1) + \cdots + \exp(X_n) + \cdots + \exp(X_n\right] \\ \mathbb{E}\left[\exp(X_1) + \cdots + \exp(X_n) + \cdots + \exp(X_n\right] \\ \mathbb{E}\left[\exp(X_1) + \cdots + \exp(X_n\right] + \cdots + \exp(X_n) \\ \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] = \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] \\ \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] + \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] \\ \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] + \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] \\ \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] + \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] \\ \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] + \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] + \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] \\ \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] + \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] \right] \\ \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] = \mathbb{E}\left[\exp(X_n + \cdots + X_n\right] + \mathbb{E}\left[\exp$$

Revisiting Coin Flips: Applying Chernoff

You have 10 coins with p_1, p_2, \dots, p_{10} of each coming up heads and $p_1 + p_2 + p_2$ $\dots + p_{10} = 1$. What's the maximum probability that all 10 coins come up heads? $X_i = \begin{cases} 1 & \text{locals } P_i \\ 0 & \text{fail } I_{-P_i} \end{cases} \longrightarrow \mathbb{E}\left[\exp(X_i)\right] = P_i(X_i=1) \cdot \exp(1) + P_i(X_i=0) \cdot \exp(0)$ $p_{i} \cdot e_{+} + (1-p_{i}) = 1 + p_{i} \cdot (e-1)$ Y= X,+--- X, $\mathbb{E}\left[\exp\left(\frac{x}{y}\right)\right] = \prod_{i=1}^{10} \mathbb{E}\left[\exp\left(\frac{x}{i}\right)\right] \leq \prod_{i=1}^{10} \exp\left(\frac{p}{p}\left(e^{-1}\right)\right)$ p. (e-1) 1+x < exp(x) $= exy\left(\sum_{i=1}^{10} p_i(e_{-1})\right) = exp(e_{-1})$ $\begin{array}{rcl} \text{Chernoff}: \Pr[Y_{7,10}] \leq \mathcal{I} = \left[\exp(\lambda Y)\right] \leq \exp(\lambda Y) > \exp(\lambda Y) \leq \exp(\lambda Y) \leq \exp(\lambda Y) > \exp(\lambda Y) \leq \exp(\lambda Y) > \exp$ - 3.6 Vio Markov

Beyond Coin Flip: Dealing with all bounded random variables

Hoeffding's Lemma

Consider any random variable X whose mean is 0 and is bounded i. e., $X \in [a, b]$ $M_X(\lambda) \coloneqq \mathbb{E}[\exp(\lambda X)] \le \exp\left(\frac{(b-a)^2}{8}\lambda^2\right) \qquad P_{\mathcal{A}}\left[x \in [a, b]\right] \ge 1$

Implications of this when applied to Chernoff bound

$$\Pr[X \ge t] \le \frac{M_X(\lambda)}{\exp(\lambda t)} = \frac{\exp\left(\frac{(b-a)^2}{2\lambda^2}\lambda^2\right)}{\exp(\lambda t)} = \exp\left(\frac{(b-a)^2}{2\lambda^2}\lambda^2 - \lambda t\right)$$

$$\chi_{1+\cdots+\chi_n}$$

Hoeffding's Inequality

Consider random variable $X_1, ..., X_n$ be i.i.d independent random variables with mean μ and bounded between a and b. Then

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu) \ge t\right] \le \exp\left(-\frac{2nt^{2}}{(b-a)^{2}}\right)$$

and

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)\leq -t\right]\leq \exp\left(-\frac{2nt^2}{(b-a)^2}\right).$$

Proof idea