Data 102 Spring 2022
Lecture 22

Concentration Inequalities




Weekly Outline

e Last week: Repeated decision making with feedback
o Reinforcement learning

e This lecture: Concentration inequality.
o How close are expectation to reality most of the time?

e Next up: Application of concentration inequalities to decision making.




Announcements

Homework 5 is due this Friday
Project proposals instructions and rubrics will go out today

Midterm 2 is next Thursday

o More info on Ed soon,
o Including material covered this week.
o Start studying now and come to OH.

More info coming on Thursday about extra credit and expectations for passing
grades.




Expectation versus Reality

Question: There is a slot machine with a payout, whose expected value is $5.
Let’s say p is the probability that the payout is $100. What are the plausible values
for p?
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e Markov Inequality

Let X be a non-negative random variable. For any ¢t > 0,

Pr[XZt]S@/

Alternatively,

Pr[X >t E[X]] < 1/t.
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Concentration Inequalities Generally

Concentration inequalities provide Benefits:

bounds on how a random variable 1. When X's distribution is unknown
deviates from its mean. 2. No closed-form for X’s tail

3. Result of complex combination of
other random variables.




Interpretation of Markov’s Inequality




Sum of Random Variables

Question: You have 10 coins with probabilities of coin flipping to head being
D1, D2, -, P10- Let's say p; + p, + -+ + p1o = 1. What’s the maximum probability that

all 10 coins come up heads, using Markov’s inequality? What is the random variable

you are using?
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Can we do any better?



Better Concentration Inequalities for sum of variables

[ssues with Markov’s inequality:

Doesn’t improve with summation wﬂmgwgﬂ-& N dnes _
udsyerlon @
—> Law of large numbers implies that sum of random variables tends to a Gaussian
distribution. Gaussians have small tail probabilities.
- We need to consider and leverage variance of random variables.
—> Application of Markov with Linearity of Expectation in last slide doesn’t leverage

variance.




Leveraging Variance in Application of Markov Inequality

r Chebychev’s Inequality

Suppose X has a mean of u and standard deviation o.
What is the

PrlX —p|=>¢- a]s.l) -%;

.

Apply Markov’s inequality to the non-negative variable Z = (X — p)?
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| X-M) < t.o
Revisiting Coin Flips: Applying Chebychev’s Inequality

You have 10 coins with p4, p5, ..., p1o 0f each coming up heads and p; + p, +
-+ p1o = 1. What's the maximum probability that all 10 coins come up heads?
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Markov VS.
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Idea: Taking Markov and Chebychev to the ne)§t level!
El1X-4I7] Z=( 7\—“)

Chebychev’s inequality Pr[|X — u| = t] < =

E[|X — :u|3] Z = |X — p|3 in Markov
t3 —
E[lX — y|4] Z = |X — p|* in Markov

t4

Pr|X —pul >t] <

PrlX —pu|>t] <

Alternatively, what if we consider Z = exp(X) or even exp(4 X) ?
—> At a high level, exp(4X) includes lt e higher powers (called moments)
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- E[exp(1X)] is called the M gtment\ﬁ"éne ing FunctiomMx(A). N AG’@
- Markov together with MGF is called the Chernoff bound. —
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Revisiting Coin Flips: Applying Chernoff

You have 10 coins with p4, p5, ..., p1o 0f each coming up heads and p; + p, +
=+ + P10 = 1. What's the maximum probability that all 10 coins come up heads?
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Beyond Coin Flip: Dealing with all bounded random variables
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Hoeffding’s Lemma )
Consider any random variable X whose mean is 0 and is bounded i.e., X € [a, b]

b — a)2 —
Mx(2) = E[exp(1X)] < exp (ﬂ AZ) P (xeid)¥
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Implications of this when applied to Chernoff bound
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Hoeffding’s Inequality
Consider random variable X4, ... X;; be i.i.d independent random variables with
mean u and bounded between a and b. Then
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Prl z(x y)>t‘ eXp< (bfta)z)

1% 2nt?
Pr [E;(Xi—ﬂ) < —t] < exp <_(bf—ta)2>

Proof idea







