Data 102 Spring 2022 Lecture 7

Graphical Models

Weekly Outline

• Last week: Frequentist vs Bayesian, intro to Bayesian modeling

• Today: Graphical Models

• Setting up and understanding more interesting/complicated Bayesian models

• Next time: How do we figure unknowns in more complicated models?

Announcements

- Lab 0 grades are out!
 - Please carefully read the Ed post
 - Regrades are due by 2/16: no exceptions!
- Updates on Lab deadline policy
 - From Lab 2 (this week) onwards, all students can submit any lab assignment 24 hours after the deadline without penalty
 - Please don't use this as an excuse to procrastinate on the lab!
- HW2 released: please start early!

Recap: Statistical modeling

- Goal: find unknown parameter θ using observed data x
- How:
 - Define a probability model for the data/parameters, then use it to estimate θ from x
- Likelihood function p(x|θ): captures how likely our data are for each parameter
 - Used in both frequentist and Bayesian models
- Frequentist modeling
 - MLE (Maximum Likelihood Estimate): value of θ that makes $p(x|\theta)$ as large as possible
- Bayesian modeling
 - Define a prior $p(\theta)$: what we believe about the parameter before we see any data
 - \circ Compute posterior p($\theta|x)$: what we believe about the parameter after observing data
 - To get a single estimate for θ from the posterior, we can use the MAP or LMSE estimates
 - MAP: value of θ that makes $p(\theta|x)$ as large as possible
 - LMSE: $E_{\theta|x}[\theta]$ (expectation of θ according to posterior $p(\theta|x)$)

Conjugate Priors

XZ) Exoplanet Model X,...,Xhi Xi is radius of exoplanet i Zur Zn: Zi is SO if exoplanet i is small conknown big Mo, Jo: Mean & SD for "small" planets Untrown Mi, J: Mean & SD for "big" planets Mi, J: Mean & SD for "big" planets Zin Ber(TT): Prior for unknown Z P(Olx) MK ~ M N (and Mp, Jp), x=0,1 : Prior for unknown M., MI $x_i | z_i, \mu_o, \mu_i \sim \mathcal{N}(M_{z_i}, \sigma)$: like lihood $p(z_{i:n}, \mu_o, \mu_i | x_{l:n})$

A Graphical Model for COVID Meta-Analysis

- Question: if someone has COVID, how likely are they to transmit it to someone else in their household?
- Goal: Use data from multiple studies to get a better estimate
- Definitions:
 - Secondary Attack Rate (SAR, π): Probability of transmitting COVID to someone in household
 - **Number of participants in study i (all sharing households w/COVID-positive people)**
 - \circ **k**_i: How many of them test positive

Graphical Models Recap

Conditional Independence