
Data 102 Homework 6 Due: 5 PM Saturday, April 30, 2022

Overview

Submit your writeup, including any code, as a PDF via gradescope.1 We recommend reading
through the entire homework beforehand and carefully using functions for testing procedures,
plotting, and running experiments. Taking the time to reuse code will help in the long run!

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, please include their names on your submission. Please make sure any handwritten
answers are legible, as we may deduct points otherwise.

Simulation Study of Bandit Algorithms

In this problem, we evaluate the performance of two algorithms for the multi-armed bandit
problem. The general protocol for the multi-armed bandit problem with K arms and n rounds
is as follows: in each round t = 1, . . . , n the algorithm chooses an arm At ∈ {1, . . . ,K} and
then observes reward rt for the chosen arm. The bandit algorithm specifies how to choose
the arm At based on what rewards have been observed so far. In this problem, we consider
a multi-armed bandit for K = 2 arms, n = 50 rounds, and where the reward at time t is
rt ∼ N (At − 1, 1), i.e. N (0, 1) for arm 1 and N (1, 1) for arm 2.

(a) (4 points) Consider the multi-armed bandit where the arm At ∈ {1, 2} is chosen accord-
ing to the explore-then-commit algorithm (below) with c = 4. Let Gn =

∑n
t=1 rt denote

the total reward after n = 50 iterations. Simulate the random variable Gn a total of
B = 2000 times and save the values G

(b)
n , b = 1, . . . , B in a list. Report the (empirical)

average pseudoregret 1
B

∑B
b=1

(
50µ∗ −G

(b)
n

)
(where µ∗ is the mean of the best arm) and

plot a normalized histogram of the rewards.

Algorithm 1 Explore-then-Commit Algorithm

input: Number of initial pulls c per arm
for t = 1, . . . , cK : do

Choose arm At = (t mod K) + 1
end

Let Â ∈ {1, . . . ,K} denote the arm with the highest average reward so far.
for t = cK + 1, cK + 2, . . . , n : do

Choose arm At = Â
end

(b) (4 points) Consider the multi-armed bandit where the arm At ∈ {1, 2} is chosen accord-
ing to the UCB algorithm (below) with c = 4, n = 50 rounds. Repeat the simulation in
Part (a) using the UCB algorithm, again reporting the (empirical) average pseudoregret

and the histogram of G
(b)
n for b = 1 . . . B for B = 2000. How does the pseudoregret

compare to your results from part (a)?

1In Jupyter, you can download as PDF or print to save as PDF
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Note: If TA(t) denote the number of times arm A has been chosen (before time t) and
µ̂A,t is the average reward from choosing arm A (up to time t), then use the upper con-

fidence bound µ̂A,TA(t−1) +
√

2 log(20)
TA(t−1) . Note also that this algorithm is slightly different

than the one used in lab and lecture as we are using an initial exploration phase.

Algorithm 2 UCB Algorithm

input: Number of initial pulls c per arm
for t = 1, . . . , cK : do

Choose arm At = (t mod K) + 1
end
for t = cK + 1, cK + 2 . . . : do

Choose arm At with the highest upper confidence bound so far.
end

(c) (1 point) Compare the distributions of the rewards by also plotting them on the same
plot and briefly justify the salient differences.

Private Mean Estimation

One of the most important techniques in data analysis and machine learning is mean esti-
mation. It is used a subroutine in essentially every task. In this question, we will explore
how to incorporate differential privacy into mean estimation. En route, we will explore the
Laplace mechanism, which is one of the fundamental tools in building differentially private
algorithms.

Let S = {X1, . . . Xn} be i.i.d. samples from a Bernoulli distribution with unknown mean
p. Recall, from HW5, that the sample mean

pn(S) =
1

n

∑
x∈S

x (1)

satisfies |pn − p| ≤ cn−1/2 with probability 0.99 for some constant c.
In order to incorporate privacy, the main idea is to add noise to the estimator Equation (1).

For the noise distribution, we will use the Laplace distribution, which has density given by

fµ,b(x) =
1

2b
exp

(
−|x− µ|

b

)
.

We will denote this distribution as Lap (µ, b). The mean of the distribution is µ and the
variance is 2b2. The differentially private estimator is given by

p̂ϵ,n (S) = pn(S) + Y

where Y is sampled from Lap
(
0, 1

ϵn

)
. Here ϵ is a parameter that will control the privacy.

(a) (1 point) Let S1 and S2 be two data sets with n binary samples ({0, 1}-valued) each.
Additionally, also assume that S1 and S2 differ only in one item. More precisely, we can
construct S2 by removing one element from S1 and adding another binary value (0 or 1).
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Show that the sample means for the two sets are close. Specifically, show:∣∣pn(S1)− pn(S2)
∣∣ ≤ 1

n
. (2)

This is referred to as pn having sensitivity n−1.

(b) (1 point) For any fixed S, explain why p̂ϵ,n (S) is distributed according to a Laplace
distribution. What are the corresponding parameters?

(c) (2 points) First, we will show that the above estimator is still fairly accurate. Show that
with probability 0.99 (over the sampling of the noise), for every S, we have∣∣pn (S)− p̂ϵ,n (S)

∣∣ ≤ 20

ϵn
.

You may find it especially useful to apply a concentration inequality we learned about
in class.

(d) In this part, we will see that the mechanism is ϵ-differentially private. Let us recall the
definition of differential privacy in this context. An estimator g is ϵ-differentially private
if for all sets A ⊂ R, we have

Pr[g(S1) ∈ A] ≤ exp(ϵ) · Pr
[
g(S2) ∈ A

]
where S1, S2 are two data sets that differ only in one item.

(i) (3 points) Let Y1 ∼ Lap (µ1, b) and Y2 ∼ Lap (µ2, b). Show that

Pr [Y1 ∈ A] ≤ exp

(
|µ1 − µ2|

b

)
· Pr [Y2 ∈ A] .

This hints at why the Laplace distribution is particularly well suited for differential
privacy.

Hint: Find a bound on the likelihood ratio, and relate that to the inequality above

(ii) (2 points) Using Equation (2) and earlier parts of the question, show that the esti-
mator p̂ϵ,n is ϵ-differentially private.

(iii) (1 points) Put these steps together show that p̂ϵ,n is a ϵ-DP estimator for p with
error ∣∣p− p̂ϵ,n

∣∣ ≤ O

(
1√
n
+

1

nϵ

)
with probability 0.98 over the randomness of the sample and the mechanism.

(e) (1 point) Now, suppose that instead of Bernoulli, the individual samples Xi were real-
valued random variables taking values in [0, 5]. Which part(s) of the analysis above (if
any) would change? You don’t need to redo the analysis.
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