
Data 102 Spring 2021

Midterm 2

• Please write your solutions using either pen/pencil and paper, or a tablet. Each ques-
tion should start on a new page. At the end of the exam period (or earlier), please
upload your exam to the “Midterm 2” assignment on Gradescope. It is your respon-
sibility to make sure your work will be legible!

• We will not answer any questions during the exam. If you think a question is unclear,
state your assumptions and answer accordingly.

• You have 80 minutes to work on the exam: you must stop working at 11:00AM PT.

• This exam has 6 questions, for a total of 40 points. You must complete all 6
questions to receive full credit. There are multiple versions of this exam.

• Unless otherwise stated, you must show your work to receive full credit.

• You may, without proof, use theorems and facts that were given in the lectures, home-
work, lab, or discussions.

• You must complete this honor pledge in order to receive credit on the
exam: We ask that you act in accordance with the honor code. Please copy the
following statement by hand and sign your name, and include this in your submission.

As a member of the UC Berkeley community, I act with honesty,
integrity, and respect for others. These answers are my own
work.



0. Make sure you complete the honor pledge on the previous page.

1. (5 points) Nonparametric methods.

(a) (1 point) (True/False) When training a random forest, each tree is trained with
the same features, but in a different order.

Solution: False.

(b) (1 point) (True/False) Techniques like LIME use a simple, interpretable model to
approximate a more complex model.

Solution: True.

(c) (1 point) (True/False) If there are nonlinear interactions between the input vari-
ables and a binary output label, then there is no way to use logistic regression to
model the relationship between them.

Solution: False. We can use nonlinear functions of the input variables as ad-
ditional features.

(d) (1 point) (True/False) Backpropagation is an algorithm that is only used for train-
ing neural networks.

Solution: False.

(e) (1 point) (True/False) When thinking about the bias-variance tradeoff, logistic re-
gression has higher bias than a decision tree (with no depth limit).

Solution: True. Logistic regression
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2. (15 points) Causal inference. You are working with a developmental economist to
understand the effect of free school lunches on school attendance. To study this, the
economist conducted a completely randomized experiment that randomized Grade 5
students into receiving a free lunch (T = 1) or not (T = 0), and then observed whether
they attended school (Y = 1) or not (Y = 0). The results are reported in the following
table.

T = 0 T = 1
Y = 0 100 50
Y = 1 700 450

Table 1: Grade 5 students

(a) (2 points) Compute the Neyman (difference-in-means) estimate for the average
treatment effect (ATE) of school lunches on school attendance for Grade 5 stu-
dents.

Solution:

τ̂ =
1

n1

∑
Ti=1

Yi,obs −
1

n0

∑
Ti=0

Yi,obs

=
450

500
− 700

800
= 0.025.

(b) (1 point) Write one sentence of plain English interpreting the ATE. Your answer
should be understandable to a general audience, and should make the strongest
valid conclusion that you can. Hint: What is the effect of receiving a free school
lunch?

Solution: Receiving a free school lunch increases the probability of attending
school by 2.5%.

(c) (1 point) We compute a 95% confidence interval for the true ATE using the Neyman
variance. If the interval does not contain 0, which of the following null hypotheses
can we reject (at the 95% level)? Select all that apply (or write “none”).

A. Fisher’s strong null hypothesis

B. Neyman’s weak null hypothesis

Solution: Both A and B.

(d) (2 points) The economist simultaneously did a completely randomized experiment
on Grade 6 students, with the results reported in Table 2.
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T = 0 T = 1
Y = 0 200 200
Y = 1 300 300

Table 2: Grade 6 students

For the rest of this question, we investigate the results using a super-population
framework. We introduce a covariate X such that X = 1 for students in Grade
6, and X = 0 for students in Grade 5. Compute the estimated propensity score
function ê(x) for x = 0, 1.

Solution:

ê(0) =
50 + 450

(100 + 700) + (50 + 450)
=

5

13

ê(1) =
500

500 + 500
=

1

2
.

(e) (2 points) Is X (which grade a student is in) a confounding variable? In one sen-
tence, explain why or why not.

Solution: Yes. It affects both the treatment probability, as well as the outcome
Y .

(f) (2 points) Does the unconfoundedness assumption hold? In one sentence, explain
why or why not.

Solution: Yes. The unconfoundedness assumption is that

{Y (1), Y (0)} ⊥⊥ T |X.

This is true because receiving free school lunches (treatment) is randomized
within each grade.

(g) (2 points) The next two parts are about the inverse-propensity weighting (IPW)
estimate for the average treatment effect (ATE) of school lunches on school atten-
dance for the combined population of Grade 5 and 6 students. The estimate has
the form.

τ̂IPW =
1

n

(
A

ê(0)
+

B

ê(1)
− C

1− ê(0)
− D

1− ê(1)

)
. (1)

What are the values of A, B, C and D?

Solution: A = 450, B = 300, C = 700, D = 300.
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(h) (1 point) What is the value of n in equation (1)?

Solution: 1300 + 1000 = 2300.

(i) (2 points) Denote your answer in (a) using τ̂5, and denote the Neyman estimate for
the corresponding ATE computed over Table 2 using τ̂6. The economist proposes
four estimates for the average treatment effect (ATE) of school lunches on school
attendance for the combined population of Grade 5 and 6 students. They are as
follows.

(A) The IPW estimate from part (g) (Equation (1)).

(B) Add up the counts in Tables 1 and 2 and compute the Neyman estimate for
the ATE using the resulting table.

(C) 1
2
τ̂5 + 1

2
τ̂6.

(D) (1− w)τ̂5 + wτ̂6., where w = P(X = 1).

Which of these estimates are unbiased for the true ATE? Select all that apply
(or write “none”).

Solution: A and D.
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3. (3 points) Instrumental variables.

Consider the linear structural model

Y = α + τZ + βX + ε,

Z = α′ + γW + β′X + δ.

We wish to estimate the treatment effect τ of Z on Y using W as an instrumental
variable. In order for W to be valid instrumental variable, we need some assumptions
on Y , Z and W and X. For each of the quantities below, specify whether it must be
zero (= 0), must be nonzero ( 6= 0), or does not matter.

(i) Cov(W,Y )

(ii) Cov(W,X)

(iii) Cov(W,Z)

(iv) Cov(W, ε)

(v) Cov(W, δ)

Solution: Cov(W,Y ) does not matter.
Cov(W,X) = 0.
Cov(W,Z) 6= 0.
Cov(W, ε) = 0.
Cov(W, δ) = 0.
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4. (4 points) Concentration inequalities. Let X1, X2, . . . , Xn be independent, identi-
cally distributed (i.i.d.) random variables, each with mean 0, and having the same
distribution as a σ-sub-Gaussian random variable X. Let Sn =

∑n
i=1Xi.

(a) (2 points) Suppose we are told (only for this part of the question) thatX is bounded
between −a and a. Based on this information, what is a valid value for σ2? State
the smallest possible valid value.

Solution: From Hoeffding’s lemma, we have

E[eλX ] ≤ exp(λ2(a− (−a))2/8) = exp(λ2a2/2).

Hence σ2 = a2.

(b) (2 points) By Hoeffding’s inequality, we have

P(|Sn| > t) ≤ exp

(
− t2

2nσ2

)
. (2)

Which of the following changes can we make to the assumptions and still guarantee
that inequality (2) still hold? Select all that apply (or write “none”).

(A) X1, . . . , Xn are not identically distributed.

(B) X1, . . . , Xn are not independent.

(C) We have E[Xi] = µi (not necessarily 0) for each i = 1, . . . , n, but
∑n

i=1 µi = 0.

(D) Each Xi is σi-sub-Gaussian (not necessarily all the same), with
∑n

i=1 σ
2
i = nσ2.

Solution: A, C and D.
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5. (8 points) Bandit Algorithms. Consider a bandit environment with K = 2 arms,
with 1-sub-Gaussian arm reward distributions Pa and means µa for a = 1, 2. Assume
that arm 1 is the optimal arm (i.e., µ1 > µ2), and so we may define the suboptimality
gap ∆ = µ1 − µ2.

A learner has already played 7 rounds. We are told they pulled arm 1 a total of 2 times,
and arm 2 a total of 5 times.

(a) (2 points) Which of the following are possible policies that the the learner was
following? Select all that apply (or write “none”).

(A) The upper confidence bound algorithm (UCB).

(B) Explore-then-commit (ETC) with 3 rounds of exploration (m = 3).

(C) Thompson-sampling (TS).

Solution: A and C.

(b) (2 points) Suppose the learner was following a deterministic strategy (i.e. the arm
choices were determined before the start of the algorithm. We still assume arms
1 and 2 were pulled 2 and 5 times respectively.) As usual, denote the observed
average reward for each arm by µ̂a = 1

Ta(7)

∑7
s=1Xs1(As = a) for a = 1, 2. Using

Hoeffding’s inequality, we compute the following probability bound:

P(µ̂1 − µ̂2 > t) ≤ exp

(
−(t+ A)2

B

)
.

What are the values for A and B? Express your answer in terms of µ1, µ2, and ∆.

Solution: First, note that E[µ̂1 − µ̂2] = ∆. Using the exercise at the end of
Section 9 in the notes, we have

P(µ̂1 − µ̂2 −∆ > u) ≤ exp

(
− u2

2(1/2 + 1/5)

)
.

Substituting t = u+ ∆, we get

P(µ̂1 − µ̂2 > t) ≤ exp

(
− (t−∆)2

2(1/2 + 1/5)

)
.

(c) (2 points) Suppose we were running Thompson Sampling with Gaussian priors and
likelihoods. For concreteness, suppose µ1 = 5, µ2 = 3, µ̂1(7) = 4.1 and µ̂2(7) = 2.5.
Let N (za, v

2
a) be the prior for arm a = 1, 2. For each of the following parameters,

we have suggested a number of possible values. For each parameter, choose the one
option that maximizes the probability of pulling arm 1 in the next (eighth) round.
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z1 : −10, 4.1, 5, 10

z2 : −10, 2.5, 3, 10

v21 : 0.05, 10

v22 : 0.05, 10

For example, if you chose a value of 10 for all parameters, your solution might look
like: z1 = 10, z2 = 10, v21 = 10, v22 = 10. (This is not necessarily the correct answer,
just an example.)

Solution: We want to choose a prior that is certain that arm 1 has a higher
reward than arm 2. Hence, we choose z1 to be the largest possible value, z2
to be the smallest possible value, and v21 and v22 to be small. In other words,
z1 = 10, z2 = −10, v21 = v22 = 0.05.

(d) (2 points) A very risk-averse data scientist has proposed the following lower confi-
dence bound algorithm. Define the lower confidence bound

LCBa(t, δ) = µ̂a(t)−

√
2 log(1/δ)

Ta(t)

At each round t, the learner selects:

At =

{
t t ≤ K

argmaxa=1,...,K LCBa(t− 1, 1/t3) t > K.

Does this algorithm have logarithmic regret? Explain why or why not. You don’t
need to provide a full proof, but you must provide a convincing explanation.

Solution: No, this algorithm has linear regret. This is because if we get unlucky
with the best arm, its lower confidence bound may always be lower than the
lower confidence bound of a suboptimal arm, which increases the more times
we pull it.
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6. (5 points) Uncertainty quantification for GLM. You are consulting for an ice-cream
company that wants to investigate the relationship between mean daily temperature X
(in degrees Celsius) and the number of ice-cream cones sold Y (a count). You model
this using Poisson regression, with

E[Y |X] = eβ0+β1X . (3)

To fit the model, we use a data set S that contains i.i.d. samples (X1, Y1), . . . , (Xn, Yn)
from our population of interest, obtaining coefficient estimates β̂0 and β̂1.

(a) (2 points) We wish to use the bootstrap to get a 95% confidence interval for β1.
We have already generated 1000 bootstrap replicates of β̂1, which are stored in a
one-dimensional numpy array beta boot. Write no more than two lines of code
in Python that gives the left and right end-points of such an interval. You may
assume that we have already run the line import numpy as np.

Solution: np.percentile(beta boot, [2.5, 97.5])

(b) (1 point) After running your code, you discover a bug: each bootstrap replicate β̂∗

was obtained by drawing 2n samples at random with replacement from S (instead
of just n samples). Compared to the correct bootstrap confidence interval, is the
width of your confidence interval smaller, larger, or roughly the same?

Solution: Smaller.

(c) (1 point) Suppose we know that the mean temperature tomorrow is going to be
35◦C. Given a model with regression coefficients β = (β0, β1), what is the probability
p(Y = 90|X = 35, β) that 90 ice-cream cones will be sold tomorrow?

Solution: The likelihood is

p(Y = 90|X = 35, β) = e−e
β0−35β1 e

90(β0+35β1)

90!
.

(d) (1 point) Suppose we instead use a Bayesian approach, and fit a Bayesian Poisson
GLM. Let q(β) denote the posterior distribution (density) that we compute over
β = (β0, β1). Write a formula for the posterior predictive probability that 90
ice-cream cones will be sold tomorrow given that the mean temperature tomorrow is
going to be 35◦C. You may leave your answer in terms of q and p(Y = 90|X = 35, β).

Solution:

P(Y = 90|X = 35, S) =

∫
R2

p(Y = 90|X = 35, β)q(β)dβ
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