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1. (10 points) For each of the following, answer true or false. Circle T for true and F
for false. You don’t need to justify your answer.

(a) (1 point) ( T / F ) Thompson sampling always accumulates less regret than
UCB.

Solution: False, if the priors on the arms are bad TS can perform very poorly.

(b) (1 point) ( T / F ) In the band-optimal stable matching between drummers
and bands, each band gets their most preferred drummer.

Solution: False, band-optimal means that the bands get the best attainable
drummer, where attainable drummers are a subset of all the drummers.

(c) (1 point) ( T / F ) Increasing the number of hidden layers in a neural network
increases the bias.

Solution: False, typically more expressive model tend to have lower bias, even
if this isn’t always true.

(d) (1 point) ( T / F ) Assume that you are trying to estimate the causal effect of
Income on Life Expectancy in the US. Education is often a confounder, as people
with more education tend to have both higher income and longer life expectancy.
Given the causal diagram below, is it true or false that if Education is omitted, then
you would likely over-estimate the causal effects of Income on Life Expectancy?

Life ExpectancyIncome

Education

Solution: True

(e) (1 point) ( T / F ) In the GridWorld environment the value of a state V (s)
is the sum of Q values corresponding to all possible actions from state s; i.e.,
V (s) =

∑
a∈all possible actionsQ(s, a).

Solution: False, given policy π we have that V (s) =
∑

a π(a|s)Q(s, a)

(f) (1 point) ( T / F ) The Bellman equation states that the value of the cur-
rent state can be decomposed as the reward at the current state/action and the
(discounted) value of the future state.
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Solution: True.

(g) (1 point) ( T / F ) Consider a random variable that has a finite mean, but an
infinite variance. The Chebyshev inequality provides a correct, but vacuous, bound
on tail probabilities in this case (i.e., the bound on the probability exceeds one).

Solution: True.

(h) (1 point) ( T / F ) The ε-Greedy algorithm for a multi-armed bandit achieves
sublinear regret.

Solution: False.

(i) (1 point) ( T / F ) Under Gaussian likelihood (y(i) ∼ N(βTX(i), 1)), the MLE
estimator β̂MLE is identical to the OLS estimator β̂OLS.

Solution: True

(j) (1 point) ( T / F ) If a test fails to reject a hypothesis H0 : µ = 0 at a 5%
significance level, then it automatically fails to reject at 99% confidence level.

Solution: True
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2. (10 points) Distribution Shift

A team of researchers is working on face recognition software. They have obtained
photographs of 10,000 individuals in Company A (one photo per individual), across
four demographic groups: darker skin females, darker skin males, lighter skin females
and lighter skin males (each individual belongs to one group). Table 1 contains the
breakdown across the four categories for the training dataset:

Darker Skin Lighter Skin
Female 10% 10%
Male 30% 50%

Table 1: Gender-Shade Distribution in Company A

The classifier trained on this data has the following classification accuracy across the
four demographic groups:

Darker Skin Lighter Skin
Female 0.55 0.7
Male 0.85 0.95

Table 2: Gender-Shade Accuracy

(a) (2 points) What is the average accuracy of the classifier?

Solution: The average accuracy is: 0.55×0.1+0.7×0.1+0.85×0.3+0.95×0.5 =
0.855

(b) (2 points) Encouraged by the average accuracy in part (a), Company B decides to
adopt the classifier. The demographics in Company B are as follows:

Darker Skin Lighter Skin
Female 10% 40%
Male 40% 10%

Table 3: Gender-Shade Distribution in Company B

Compute the expected average accuracy for individuals in Company B.

Solution: The expected accuracy is: 0.55×0.1 + 0.7×0.4 + 0.85×0.4 + 0.95×
0.1 = 0.677

(c) (2 points) Why is the accuracy lower in Company B?
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Solution: Company B has a smaller proportion of lighter skin males compared
to the training data, and the classifier performs better for such individuals.

(d) (2 points) A journalist argues that the classifier should not be used because, refer-
ring to Table 2, she notes that it yields worse accuracy for darker skin individuals,
and indeed this holds for both women and for the men w(the two rows of the ta-
ble). A lawyer at Company B investigates this by computing the average accuracy
(averaging across gender) for darker skin individuals and lighter skin individuals in
the data from Company B.

Do this computation yourself—compute the average accuracy for lighter skin in-
dividuals and the average accuracy for darker skin individuals (averaging across
gender). Which accuracy is larger?

Solution: The average accuracies are: 0.75 for lighter skin individuals and 0.77
for darker skin individuals.

(e) (2 points) The lawyer claims that the accuracy is roughly the same for darker skin
and lighter skin individuals; indeed, it’s slightly larger for darker skin individuals.
Is he correct? If so, is this claim consistent with the journalist’s observation that the
classifier is worse for darker skin individuals? The lawyer concludes that the clas-
sifier can be deployed after all, and the journalist disagrees. Who do you support?

Solution: This is an example of Simpson’s paradox. They should support the
journalist. (Or give a good reason why they don’t).
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3. (10 points) Differentially private Bayesian estimator.

The GSIs of Data 102 would like to estimate the proportion of students who attend office
hours at least once. We denote the proportion as µ. Assume that there are n students
in all. Based on past experience, we let the prior for µ be µ ∼ Beta(α, β), for some
α > 2, β > 2. We assume that for each individual student, i ∈ [n], the attendance is
distributed as a Bernoulli distribution: Xi |µ ∼ Bernoulli(µ). Recall that the density
function for the beta distribution is parameterized by shape parameters α > 0 and β > 0,
and is given by

f(z;α, β) ∝ zα−1(1− z)β−1, 0 < z < 1.

Recall also that the mean of the beta distribution is equal to α/(α + β). Finally, recall
that the Bernoulli distribution, Bernoulli(µ), is the distribution of a random coin toss
that takes the value 1 with probability µ and the value 0 with probability 1− µ.

(a) (3 points) Derive the posterior distribution P (µ|X1, · · · , Xn).

Solution: The posterior distribution is Beta(α +
∑
Xi, β + n−

∑
Xi).

(b) (2 points) Derive the mean µ̂pos of the posterior distribution (the posterior mean),
in terms of α, β, and the Xi.

Solution:

µ̂pos =
α +

∑
Xi

α + β + n
.

(c) (3 points) Now suppose we want to compute the posterior mean in an ε-differentially
private way. Recall that a differentially private algorithm µ̂ is an algorithm which,
for all databases S ′ that are neighbors of our database S = {X1, · · · , Xn} (mean-
ing they differ in only one entry; one can change one and only one of the Xi to a
different value), satisfies the following:

P(µ̂(S) = a)

P(µ̂(S ′) = a)
≤ eε.

We adopt the Laplace mechanism, which outputs µ̂Lap(X1, · · · , Xn) = µ̂pos(X1, · · · , Xn)+
ξε, where ξε ∼ Lap(0, p). Find the smallest scale parameter p such that µ̂Lap is ε-
differentially private.

Solution: We know that Xi is always bounded in between 0 and 1. Thus
the sensitivity is ∆f = supneighboring S,S′ |µ̂(S) − µ̂(S ′)| ≤ 1/(α + β + n). From
Discussion 13, we know that one can pick p = 1/(ε(α + β + n))
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(d) (2 points) How does the noise level p change with respect to α, β and n? Explain
intuitively why this is the case.

Solution: The noise level p decreases as α, β, n grow larger. This is intuitively
correct. We know that α, β can be viewed as ‘phantom samples’ obtained in the
prior, and n is the number of samples we acquired. More samples mean that
an individual sample will reveal less information. Thus it suffices to add some
Laplace distribution with smaller variance.
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4. (10 points) Upper confidence bounds

Netflix would like to compare a set of recommendation algorithms by running an ex-
periment in which algorithms are tried out on small group of users. They also want to
ensure that users are getting a good overall experience during this experiment. Thus,
they use a bandit algorithm. In each round, they randomly select one recommendation
algorithm (arm) a ∈ [K] out of K algorithms (arms), launch it, and observe the perfor-
mance Xa, which is some measure of the engagement of the users. Assume that for each
arm a ∈ [K], the reward Xa is a random variable with mean µa = E[Xa]. Netflix uses
the upper confidence bound algorithm (UCB) to help them balance the exploration and
exploitation.

(a) (3 points) Rather than making the usual assumption of bounded reward, Netflix
prefers to only assume that the reward of any arm a has bounded variance:

E[(Xa − µa)2] ≤ σ2, (1)

for all a and for some σ > 0. Using a concentration inequality, provide an upper
bound on P (|Xa − µa| ≥ γ) that is as tight as possible. (Here γ > 0. Your final
bound can depend on γ and σ.)

Solution: From Chebyshev’s inequality, we know that

P (|Xa − µa| ≥ γ) ≤ σ2

γ2
. (2)

(b) (3 points) Recall that the general method for constructing an upper confidence

bound for the true mean µa of an arm a, given Ta(t) i.i.d. samples X
(1)
a , ..., X

(Ta(t))
a ,

is to find a value of Ca(Ta(t), δ) such that:

P (µa < µ̂a,Ta(t) + Ca(Ta(t), δ)) > 1− δ, (3)

where µ̂a,Ta(t) is a sample mean: µ̂a,Ta(t) = 1
Ta(t)

∑Ta(t)
i=1 X

(i)
a . Now under the same

variance bound assumption (Equation (1) in (a)), construct a tight upper confidence
bound Ca(Ta(t), δ) for arm a, after observing Ta(t) sample rewards from arm a.
(Your final answer should depend on σ. δ and Ta(t).)

Solution: Since Xa has variance bounded by σ2, we have

E[(µ̂a,Ta(t) − µa)2] ≤
σ2

Ta(t)
.

Thus by Chebyshev’s inequality, we have

P (|µ̂a − µa| ≥ γ) ≤ σ2

Ta(t)γ2
.
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By setting δ = σ2

Ta(t)γ2
, we can see Ca(Ta(t), δ) = γ = σ/

√
δTa(t).

(c) (1 point) Let δ = 1/2. At time step t+1, we have access to the count of samples for
each arm, Ta(t), and we have the mean reward µ̂a,Ta(t). Describe the UCB algorithm
by filling the blank below.

At time step t, the UCB algorithm chooses arm At+1 as

At+1 = argmax
a∈[K]

.

Solution:

At+1 = argmax
a∈[K]

µ̂a,Ta(t) +

√
2σ√
Ta(t)

.

(d) (3 points) Recall that UCB algorithm aims at getting sublinear pseudo-regret,
where the pseudo-regret is defined as

Rt = tµ∗ − E

[
t∑

s=1

XAs

]
. (4)

Here µ∗ = maxa E[Xa] is the maximum expected mean among all rewards, and As
is the choice of arm by the UCB algorithm at time s. By “sublinear,” we mean
Rt/t→ 0 as t→∞.

Consider the case of K = 2. Suppose that we have a wrong modeling assumption,
and X1 is distributed as

X1 =

{
0, with probability 0.99,

1000σ, with probability 0.01.
(5)

Here V ar[X1] is much larger than σ2, which violates the assumption in (1). However
we do not have the knowledge of V ar[X1] and use the same algorithm derived in
(b) and (c) with δ = 1/2.

Find a distribution of the reward X2 such that the UCB algorithm in (c) may fail
to guarantee sublinear pseudo-regret. Justify your answer.

Solution: We let X1 be distributed as

X1 =

{
0, with probability 0.99,

1000σ, with probability 0.01,
(6)
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and X2 be a random variable which always takes value 5σ. We can see that
E[X1] > E[X2]. So we shall choose arm 1 in the long run to get sublinear
pseudo-regret. However, at the first two rounds when we pull both arm 1 and
arm 2, with probability 0.99 we see 0 reward for arm 1, 5σ reward for arm 2. The
corresponding confidence bound is

√
2σ. In the third round, we compare the

mean + confidence bound for both arms, since 0 +
√

2σ < 5σ, we will continue
to pull arm 2 again and again without getting to pull arm 1. Thus overall we
achieve linear regret with probability 0.99, which gives also linear pseudo-regret.

Student ID: Page 10 of 16



5. (10 points) Stable matchings.

(a) (3 points) Suppose there are two bands, b1 and b2, and two drummers, d1 and d2.
Consider the following two matchings, M and M ′, of these bands and drummers:

M = {(b1, d1), (b2, d2)}
M ′ = {(b1, d2), (b2, d1)}

Write down an example of preference lists for the bands and the drummers such
that both of these matchings are stable.

Solution: Preference lists, in order of most preferred to least preferred, could
be

b1 : d1, d2

b2 : d2, d1

d1 : b2, b1

d2 : b1, b2

or

b1 : d2, d1

b2 : d1, d2

d1 : b1, b2

d2 : b2, b1

(b) (3 points) In the same problem setting as Part (a), write down an example of
preference lists for the bands and the drummers such that M is stable but M ′ is
unstable.

Solution: Preference lists, in order of most preferred to least preferred, could
be any of the following:

b1 : d1, d2 b1 : d1, d2 b1 : d1, d2 b1 : d1, d2

b2 : d2, d1 b2 : d2, d1 b2 : d1, d2 b2 : d1, d2

d1 : b1, b2 d1 : b1, b2 d1 : b1, b2 d1 : b1, b2

d2 : b2, b1 d2 : b1, b2 d2 : b2, b1 d2 : b1, b2
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b1 : d1, d2 b1 : d2, d1

b2 : d2, d1 b2 : d2, d1

d1 : b2, b1 d1 : b1, b2

d2 : b2, b1 d2 : b2, b1

(c) (4 points) For a general matching problem, suppose there is a band b and a drum-
mer d that have ranked each other first on their preference lists. Prove that in all
stable matchings, b and d are matched together.

Hint : Use a proof by contradiction. That is, start by assuming there does exist
a stable matching M where b and d are not matched to each other, and find a
contradiction that arises from this assumption.

Solution: Assume there exists a stable matching M where b and d are not
matched to each other. Then b prefers d to whomever b is matched to in M ,
and d prefers b to whomever d is matched to in M , so (b, d) are a blocking pair
for M , which is a contradiction.
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6. (10 points) Grid World

Consider the following grid representation of a game:

R1 R2

× start

where start represents our initial state and × is a state the agent cannot access. R1 and
R2 represent two terminal states with rewards R1 and R2, respectively, where R1 > 0
and R2 > 0. At each state, we have four possible actions (up, down, left and right).
Suppose the transitions are deterministic, meaning that an action in a specific direction
always moves us in that direction. If the state that results from the proposed action
is not accessible, then the agent remains at the same state. For instance, if the agent
chooses action left when they are at state start, they will remain at state start. Recall
that for any given γ ∈ (0, 1), the optimal value function V ∗(s) is defined as:

V ∗(s) = max
a∈A

∑
s′∈S

P(s′ | s, a) [R(s, a, s′) + γV ∗(s′)] ,

and the optimal Q-function Q∗(s, a) is defined as:

Q∗(s, a) =
∑
s′∈S

P(s′ | s, a) [R(s, a, s′) + γV ∗(s′)] .

(a) (2 points) For this part only, assume R1 = 10, R2 = 2. Compute the optimal
value function V ∗(s) for all states s, when (i) γ = 0.9; (ii) γ = 0.1. You don’t
need to justify your answers. You only need to complete the following two grid
representations with the values you computed. We already filled out some values
for you. You do not need to simplify your answers arithmetically.

N/A N/A

10 N/A

N/A N/A

10 N/A

γ = 0.9 γ = 0.1
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Solution:

N/A N/A 10× 0.95

10 N/A 10× 0.94

10× 0.9 10× 0.92 10× 0.93

N/A N/A 2

10 N/A 0.2

1 0.1 0.02

γ = 0.9 γ = 0.1

(b) (2 points) Let’s consider what would happen if γ > 1. For this part only, assume
γ > 1. Describe what your optimal moves would be if R1 > R2 > 0. [Hint: Do you
want to end the game early?]

Solution: Optimal actions are determined by the optimal value functions.
Since γ > 1, the optimal value function gets larger for every step. Hence,
your optimal moves would be moving across different states for as long as you
can before you reach R1. In other words, if there is no constraint on the total
number of steps, you will never terminate.

(c) (2 points) Give an expression for V ∗(start) in terms of R1, R2 and γ, where R1 > 0,

R2 > 0 and γ ∈ (0, 1). [Hint: You might use the function max(a, b) =

{
a, a ≥ b

b, a < b

in your expression.]

Solution: Since the transitions are deterministic and the only states with re-
wards are the terminal states, let the state above start be start-up and the
state below start be start-below we have:

V ∗(start) = max
a∈A

γV ∗(s′)

= γmax(V ∗(start-up), V ∗(start-below))

= γmax(max(γ5R1, R2),max(γ3R1, γ
2R2)))

= γmax(γ3R1, R2)

(7)

(d) (2 points) For this part only, assume γ = 0.9 and R2 = 10. What values can R1

take on such that Q∗(start, up) > Q∗(start, down)?
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Solution:

Q∗(start, up) = γmax(γ5R1, R2) = γmax(0.95R1, 10)

Q∗(start, down) = γmax(γ3R1, γ
2R2) = γmax(0.93R1, 10 · 0.92)

Therefore, Q∗(start, up) > Q∗(start, down) implies that

max(0.95R1, 10) > max(0.93R1, 10 · 0.92)

Since R1 > 0, we have 0.95R1 < 0.93R1. Hence, in order for the inequality above
to hold, we must have that max(0.95R1, 10) = 10 and 10 > max(0.93R1, 10·0.92).
Therefore,

10 ≥ 0.95R1

10 > 0.93R1

This implies that R1 < 10/(0.9)3 = 13.7
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7. (7 points) Miscellaneous

This problem consists of several short-answer questions.

(a) (2 points) Draw a computation graph for the following expression:

f(x1, x2, y) = y · (x1 · x2 + x2),

where x1, x2 and y are real numbers.

Solution:

(b) (3 points) Suppose we want to model the number of visitors Xt to a website over
time. Since the overall trend seems to be increasing roughly exponentially over
time, we decide to fit a Poisson model with an exponential link function; i.e., Xt ∼
Poisson(eλt).

(i) (1 point) What are some reasons the data might have greater variance than the
Poisson model can predict? List at least 2 reasons.

Solution:

(ii) (2 points) How does such model inadequacy affect the uncertainty estimates
and what is one way to try to address this?

Solution:

(c) (2 points) We observe a large sample n = 109 of real-valued data points, X1, . . . , Xn.
We compute the sample mean, X̄ = 1

n

∑n
i=1Xi, and we also want to report a stan-

dard error. Suppose that, instead of running a bootstrap where we repeatedly
resample n observations with replacement out of the original n, to save time we
repeatedly subsample m = 103 observations (with replacement), and report the
standard deviation of the averages across all subsamples. Is this subsampling pro-
cedure correct, or it will it overestimate or underestimate our uncertainty? Briefly
justify your answer with 1-2 sentences.

Solution:
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