
DS102 Fall 2019 - Final Exam

First and Last Name:

Student ID:

• Please write your first and last name as well as your student ID at the top of the first
sheet. Also write your student ID on the bottom of each page.

• You have ? minutes: there are five questions on this exam, with each question being
worth an equal amount of points.

• Make sure you have ? pages. If you do not, let us know immediately.

• Question 1 (true/false) is required.

• For the remaining four questions (Questions 2-?), we will grade all of them and take
the top ? among these ?. You may attempt all questions or skip one depending on
time.

• Even if you are unsure about your answer it is better to write down as many details
as possible so we can give you partial credit.

• You may, without proof, use theorems and facts that were given in the discussions,
lectures or notes.

• We will only grade work on the front of each page unless you indicate otherwise. The
exam is printed 1-sided so that you can use the back sides for scratch paper. If you do
run out of space on the front, continue on the back side of the page and make a note
at the bottom of this cover sheet to let us know.

• Make sure to write clearly. We can’t give you credit if we can’t read your solutions.
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1. (10 points) For each of the following, answer true or false. Circle T for true and F
for false. You don’t need to justify your answer.

(a) (1 point) ( T / F ) In causal inference, a valid instrumental variable must be
uncorrelated with the outcome.

(b) (1 point) ( T / F ) g(X) = E[Y |X] minimizes the mean squared error:
E[(g(X)� Y )2] over all bounded functions g of X.

(c) (1 point) ( T / F ) With good priors, Thompson sampling can be much more
sample-e�cient than UCB.

(d) (1 point) ( T / F ) Confidence intervals for the mean of a random variable X
derived from Chebyshev’s inequality are smaller if the variance of X is large.

(e) (1 point) ( T / F ) In ✏-di↵erential privacy, smaller ✏ means more privacy.

(f) (1 point) ( T / F ) Even if the UCB algorithm is run infinitely long, it is
possible to never pull some arm a after a finite number of rounds R.

(g) (1 point) ( T / F ) In Q-learning a low discount value will mean that the
learner will prioritize rewards that can occur sooner in time.

(h) (1 point) ( T / F ) To achieve sublinear regret with the upper confidence
bounds algorithm you need to know the smallest gap between the expected reward
of the optimal arm and the expected reward of sub-optimal arms.

(i) (1 point) ( T / F ) Chebyshev’s inequality is equivalent to Markov’s inequality
applied to (X � E[X])2.

(j) (1 point) ( T / F ) The function f described below is a linear function of ✓.

f(x, ✓) = ✓e�x + x✓ � 1

1 + ✓2
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2. (10 points) P. Diddy has recorded a new hit, “Data 102”, and wants to sell it online. In
a market study, he collects from n people the price xi 2 [0, 1] they would be willing to
pay for a download of the song. He collects the data into a data set S. Assuming that
respondents answered truthfully, a reasonable estimate for the revenue P. Diddy would
get from selling the downloads of ”Data 102” at price p is:

q(p;S) = p ·#{i : xi � p}.

P. Diddy would like to learn a price p⇤ 2 P = {$0.01, $0.02, . . . , $0.99} that maximizes
the revenue, p⇤ = argmaxp q(p;S). However, P. Diddy is also a responsible data scientist
and wants to protect the privacy of his fans, so he wants to learn p⇤ in a di↵erentially
private way.

To do so, he uses the exponential mechanism. In this problem, we go through the
derivation of this mechanism, and prove that it satisfies di↵erential privacy.

(a) As for the Laplace mechanism, we will need a notion of sensitivity. In this setting,
we define sensitivity as:

� = max
p2P

max
S,S0 neighboring

|q(p;S)� q(p;S 0)|.

Recall that S and S 0 being neighboring data sets means that they di↵er in a single
individual. What is the numerical value of �?

(b) P. Diddy wants level of di↵erential privacy equal to ✏. He outputs a value p̂(S),
which takes value p 2 P with probability:

P(p̂(S) = p) =
e

✏
2� q(p;S)

P
p02P e

✏
2� q(p0;S)

/ e
✏

2� q(p;S).

Which value has the highest probability of being released as p̂(S)?

(c) Show that, for neighboring data sets S and S 0,

e
✏

2� q(p;S)

e
✏

2� q(p;S0)
 e✏/2.

(d) Show that, for neighboring data sets S and S 0,

P
p02P e

✏
2� q(p0;S0)

P
p02P e

✏
2� q(p;S)

 e✏/2.

(Hint: Prove that
Pk

i=1 aiPk
i=1 bi

 max1ik
ai
bi
.)

(e) Conclude that the exponential mechanism is ✏-di↵erentially private. That is, show
that:

P(p̂(S) = p)  e✏P(p̂(S 0) = p),

for all neighboring data sets S and S 0, and all p 2 P .
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3. (10 points) Suppose that we are testing some number of hypotheses, and we are making
decisions (discovery (1) vs no discovery (0)) according to some unknown decision rule.

(a) Prove that 1{at least one false discovery} � FDP, where FDP denotes the false
discovery proportion.

(b) Prove that the family-wise error rate (FWER), i.e. the probability of making at
least one false discovery, is at least as big as the false discovery rate (FDR):

FWER � FDR.

(c) Suppose we want to test possibly infinitely many hypotheses in an online fashion.
At time t � 1, a p-value Pt arrives, and we proclaim a discovery if Pt  ↵t,
where ↵t =

�
1
2

�t
↵. Does this rule control the FWER under ↵? Give a proof or

counterexample.

(d) Does the rule from part (c) control the FDR under ↵?
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4. (10 points) (a) Esther and Tijana separately (and independently from each other) take
n i.i.d draws each from a Gaussian distribution with unknown mean µ and known
variance �2. They individually compute frequentist confidence intervals for the
mean from their samples, with confidence level 1�↵ each. Show that the probability
that their confidence intervals do not overlap is less than 2↵.

(b) Karl and Eric want to estimate the mean of the same Gaussian distribution, but
they will use credible intervals. However, they do not agree on their priors. In
particular, Karl specifies a Normal prior distribution on µ centered at µ1, with
standard deviation �p, µ ⇠ N (µ1, �p). Eric, on the other hand, specifies prior
distribution µ ⇠ N (µ1, �p) where µ2 > µ1, with the same standard deviation �p.
Karl and Eric will use the same n i.i.d draws x1, .., , xn from the true distribution
N (µ, �2) distribution on the parameter µ.

i. Show that the the posterior distributions that each Karl and Eric will calculate
after seeing the n samples x1, ..., xn with sample average m̄u = 1

n

Pn
i=1 xiare

given by:

N
 ✓

1

�2
p

+
n

�2

◆�1✓µ1

�2
p

+
nµ̄

�2

◆
,

✓
1

�2
p

+
n

�2

◆�1
!

and

N
 ✓

1

�2
p

+
n

�2

◆�1✓µ2

�2
p

+
nµ̄

�2

◆
,

✓
1

�2
p

+
n

�2

◆�1
!

.

ii. Karl and Eric will construct credible intervals using their posterior distribu-
tions, taking as their intervals 2 standard deviations from the mean in either
direction (roughly a 95% confidence interval).
As a function of µ1, µ2, �p and �, calculate the smallest number of samples n
for which we are guaranteed that Karl and Eric’s calculated credible intervals
overlap.

5. (10 points) You have a hypothesis that drinking boba tea after a workout causes
better muscle recovery, and thus better performance later on, in runners. However,
you also know that young people drink more boba tea, on average, and have faster
mile times, on average. Thus, the causal diagram you consider looks like the fol-
lowing: Where a denotes age, b whether an individual drinks boba after a run, and
t, mile time. The variable z is our designed incentive in the part .

Suppose you had an observational data set with elite professional runners and their
post-run boba drinking habits. In this data set, you find that older runners (50+)
on average drink less boba, and have slower mile times than younger runners (50 or
less), who drink more boba. For each age group, boba drinkers have slower miletimes
on average than the non-boba drinkers. However, ignoring age, you would find that
runners who drink more boba have faster mile times.

Which of the following are true (circle all that apply):
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a

ybz

Figure 1: Causal Diagram for part b.

(a)1. There are more older runners than younger runners in the data set.

2. The population of this study is representative of the likely e↵ect of boba on
running for the UC Berkeley Student body.

3. The study gives evidence that there may be di↵erence in mile times and boba
drinking rates between young and old runners.

(b) To your hypothesis, you enroll 100 participants in a study. The participants all do
the same running workout, and after the workout you provide 50 of the participants
with free boba, which they can either drink or not. Denote the fraction of the 50
treatment group participants who drink the o↵ered boba as:

b̄(1) =
1

50

X

i2treatment

I[bi = 1]

The second 50 participants (control group) you ask not to drink boba. However,
they could still go get boba on their own, and so you also record the fraction of the
50 participants in the control group who complied with your intention:

b̄(0) =
1

50

X

i2control

I[bi = 0]

You may assume that your participants answered whether they drank boba (bi
truthfully), and that there are no defyers in your study; anyone who acted against
your request or o↵er who would have acted that way no matter what. A few days
later, you time all 100 participants in a mile race and record their paces yi, and
calculate the average mile-times for the treatment group (z = 1, o↵ered boba) and
for the control group (z = �1, no boba):

ȳ(1) =
1

50

X

i2treatment

yi

ȳ(0) =
1

50

X

i2control

yi

Recall for this setting, that the two-stage least squares estimator for the causal
e↵ect of drinking boba on mile time (treating z as an instrumental variable) is:

�̂IV = (z>b)�1z>y
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Show that for this problem, this is equivalent to the average treatment e↵ect esti-
mator:

⌧̂c :=
ȳ(1)� ȳ(0)

b̄(1)� b̄(0)

That is, show that �̂IV = ⌧̂c.

(c) Suppose you run the regression from part (b), and you find that ⌧̂c = 0.5.

Interpret this coe�cient in terms of the problem setting (at most one sentence).

(d) Suppose that the treatment e↵ect of drinking boba on mile time change could be
di↵erent for people of di↵erent age groups. In one sentence or less, describe a new
experiment design that would account for this.

6. (10 points) The table below contains eight samples where each sample is of the form
(xi, yi) where xi 2 {0, 1}3 are its features and yi 2 {0, 1} is its label.

Feature 1 Feature 2 Feature 3 Class
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1

Furthermore, given a dataset with two class labels where p0 is the proportion of elements
with label 0 and p1 is the proportion of elements with label 1, recall that the Gini purity
is defined as

�(p0, p1) = p0(1� p0) + p1(1� p1).

(a) Describe the procedure to create a decision tree using the CART algorithm and the
Gini purity.

(b) What is the Gini purity of the dataset above?

(c) Which feature should we split on when constructing a tree for the dataset? Why?

(d) Draw a complete decision tree constructured using CART for this dataset where
each node consists of a decision rule based on one feature.

(e) Describe a way in which we might avoid overfitting in decision trees.

7. (10 points) Assume that we have the following gridworld
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-900 S 1

-900

-900

1

10

where S represents our starting point, and the 1, 10, and �100 cells represent terminal
states with corresponding rewards. For parts a-e, assume deterministic state transitions,
meaning that an action in a specific direction always moves us in that direction (unless
it’s toward the boundary of the world in which case we remain stationary).

(a) Write down the optimal value function at each empty cell below when the discount
factor � is 0.9. You may leave your answer in terms of powers of numbers.

-900 1

-900

-900

1

10

(b) Compute the optimal Q-function at our starting point for the action of going up,
down, left, and right when the discount factor � = 0.9.

(c) Write down the optimal value function at each empty cell below when the discount
factor � is 0.1. You may leave your answer in terms of powers of numbers.
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-900 1

-900

-900

1

10

(d) Compute the optimal Q-function at our starting point for the action of going up,
down, left, and right when the discount factor � = 0.1.

(e) What are the optimal moves to make at the starting point given discount factors
of 0.1 and 0.9? Are they the same? Give intuition for why or why not.

(f) Let the discount factor � 2 (0, 1]. Now suppose the state transitions are stochastic
at every cell except the starting cell. At the starting cell you will go in the direction
you want with probability 1. At every other cell you will go in your specified
direction with probability 0.7 and you have a probability of 0.1 of going in any
other direction. For example if you decide to go up you will have a 0.7 probability
of going up, a 0.1 probability of going left, a 0.1 probability of going right, and a
0.1 probability of going down. Without computing Q-functions or value functions
what do you think is the best action to perform at the starting point? Does your
answer depend on the value of the discount factor? Explain your reasoning.
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8. (10 points) import numpy as np

de f min co ins ( co ins , t o t a l ) :
i f t o t a l < 0 :

r e turn np . i n f

num coins = 0
f o r co in in co in s :

i f min co ins ( co ins , t o t a l − co in ) + 1 < num coins :
num coins = min co ins ( co ins , t o t a l − co in ) + 1

return num coins

(a) There are two bugs in this code that will cause it to give the wrong answer. What
are they? How would you fix the code to make it produce the correct output?

(b) Let n be the total monetary amount for which we are asking change. Is the number
of recursive calls the code has to make going to be closer to 2n or n? Why? Given
your answer do you think this code would be reasonable to deploy in production so
that it can be used to compute change for customers at point of sale terminals?

(c) There are two ways in which the code can be sped up. One will lead to a major
speed-up the other will lead to a minor speed-up. Describe what those two ways
are and what changes you would need to make to implement them.

(d) Given the speedup changes is the number of recursive calls the code has to make
going to be closer to 2n or n? Why?
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9. (10 points) During the project you learned a mixture of Gaussian distributions to de-
scribe the distribution of the time of day when two populations of riders rent bikes.
However, by observing the data you noticed the distributions was skewed. In this prob-
lem you will analyze learning a mixture of Poisson distributions. You first round all the
customer’s arrivals to the nearest minute of the day, and then assume that the Customers
and Subscribers are being generated from a mixture of di↵erent Poisson distributions.

Poisson(k;�) =
�k

k!
e��

Thus, for each data point i = 1, ..., n:

xi ⇠ Bernouilli(✓)

yi ⇠ Poisson(�xi)

You have observed (xi, yi) (i.e the user type and the rental time) but you do not know
✓, or the parameters � of the Poisson distributions.

(a) Express the Likelihood function p(x, y; ✓,�0,�1) in terms of the data x = (x1, ..., xn)
and y = (y1, ..., yn) and the parameters of the distributions given.

(b) Write an expression for the log-likelihood of the data as a function of the data and
the parameters of the distribution.

(c) Write an expression for the maximum likelihood estimates of ✓ (✓MLE). As a func-
tion of the observed data x = (x1, ..., xn) and y = (y1, ..., yn). (Hint: you may want
to write ✓MLE as a function of C =

Pn
i=1 xi.

(d) Derive the estimates µ̂0MLE and µ̂1MLE as a function of the observed data x1, ..., xn

and y1, ..., yn, and the parameters �0 and �1.

10. (10 points) We will now investigate the regret of UCB on a 2-armed bandit. There are
two arms each with 1-subgaussian reward distributions. Arm 1 has the higher mean (i.e.
µ1 > µ2). The upper confidence bounds for i = 1, 2 are:

UCBi(t) = µ̂i(Ti(t)) +

s
2

Ti(t)
log

1

�

where Ti(t) � 1 is the number of times arm i has been pulled up to time t and µ̂i,t is the
empirical mean of arm i up to time t:
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µ̂i(Ti(t)) =
1

Ti(t)

tX

k=1

rkI{Ak = i}.

(a) Let n be a positive integer, � 2 (0, 1), and T > n be fixed and define the event:

G = {µ1 < min
tT

UCB1(T1(t))} \
(
µ̂2(n) +

r
2

n
log

1

�
< µ1

)

Show, using the definition of the UCB algorithm that arm 2 will never be chosen
more than n times by time T by the UCB algorithm if the event G is true. (Hint:
Argue by contradiction that if G is true, then T2(t)  n).

(b) Show that the expected regret of the UCB algorithm on the event G is bounded
below n�, where � = µ1 � µ2 > 0. i.e show:

E[R(T )|G]  n�

(c) Let us now analyze the complement of G:

Gc =

⇢
µ1 > min

tT
UCB1(T1(t))

�
[
(
µ̂2(n) +

r
2

n
log

1

�
> µ1

)

Suppose that we choose � = 1
T 2 , and n = 16 log T

�2 , use the Cherno↵-Hoe↵ding bound
on 1- sub-gaussian random variables to upper bound the probability of the second
event in Gc:

Gc
2 =

(
µ̂2(n) +

r
2

n
log

1

�
< µ1

)

Recall that the Cherno↵-Hoe↵ding bound for 1-subgaussian random variables is
given by:

Pr(µ̂2(n)� µ2 > t)  e�nt2/2

(d) For the first event in Gc:

Gc
1 =

⇢
µ1 > min

tT
UCB1(T1(t))

�

Argue (in words or mathematically) why:

Gc
1 =

⇢
µ1 > min

tT
UCB1(T1(t))

�
✓

T1(T )[

k=1

(
µ̂1(k)� µ1 < �

r
2

k
log

1

�

)

✓
T[

k=1

(
µ̂1(k)� µ1 < �

r
2

k
log

1

�

)
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(e) Use the Union Bound (and the Hoe↵ding bound on the lower tail) to show that:

Pr(Gc
1)  T1(T )�

Recall that the Cherno↵-Hoe↵ding bound for the lower tail 1-subgaussian random
variables is given by:

Pr(µ̂(n)� µ < �t)  e�nt2/2

(f) Show that the expected regret of the UCB algorithm is upper bounded by:

Pr(Gc)E[R(T )|Gc]  2�

when n = 16 log(T )
�2 , and � = 1

T 2 . (Hint: Upper bound E[T2(T )|Gc] < T ).

(g) Show that when n = 16 log(T )
�2 , and � = 1

T 2 :

E[R(T )]  dne�+ 2�

where dne is the ceiling function applied to n (i.e n rounded up to the nearest
integer).

Does this show that the regret is sub-linear?

11. (10 points) In this problem we will look at the Chebyshev, and Hoe↵ding bounds for
sums of i.i.d exponential random variables. For i = 1, ..., n, let Xi be i.i.d random
variables such that:

Xi ⇠ Exponential(�)

where Exponential(x;�) = �exp(��x) for x � 0. Recall that the mean and variance of
an exponential random variable is:

E[X] = � V ar(X) =
1

�

Define µ̂ = 1
n

Pn
i=1 Xi.

(a) Use the Chebyshev bound to find an upper bound on:

Pr(µ̂� � > (1 + c)�)

(b) Write out an expression for the Moment Generating Function of an Exponential
random variable:

M(t) = E[etX ]

Be sure to explicitly state for which values of t the moment generating is finite.
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(c) What is the moment generating function, MZ(t) of:

Z =
nX

i=1

Xi

(d) Use the Cherno↵ bound to derive an upper bound on:

Pr(µ̂� � > (1 + c)�)

Does the bound you derive decay faster than the Chebyshev bound for large values
of n?

Recall that the Cherno↵ Bound is given by:

Pr(Z > c)  inf
t
E[etZ�tc]
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