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1. The Posterior Predictive Distribution for Ordinary Linear Regression

In lecture, we learned about a method to assess the validity of fitted Bayesian GLMs
called posterior predictive checks. This approach uses the posterior predictive distribu-
tion (PPD) to compare data that the model would predict (sometimes called “replicate”
data) to the data we actually observed. If the model is a good fit for the data, then the
replicate data should look similar to the observed data.

The PPD is the conditional distribution for this new replicate data ỹ, conditioned on
the data we observed. It’s described by the following formula, which uses the fact that
our model for the data y typically is based on some unobserved θ:

p(ỹ|y) =
∫
θ∈Θ

p(ỹ|θ) p(θ|y) dθ

The terms within the integral are familiar to us: the first is the likelihood of the new
replicate data, and the second is the posterior distribution for θ given the data we
actually observed. The bounds of the integral are over all possible values of θ.

In lecture, we saw an example of how to simulate replicate values from the PPD via
PyMC3. In this problem, we’ll discuss how to apply this technique in the setting of
Ordinary Linear Regression, where we can find the PPD analytically.

In Ordinary Linear Regression, we assume that each observation is independent and
have equal variance, expressed by:

y|β, σ ∼ N (Xβ, σ2I)

where y ∈ Rn, X ∈ Rn×k, β ∈ Rk, and I is the n × n identity matrix. 1We will use a
uniform prior over regression parameters,

p(β, σ2) ∝ σ−2

This prior says that every possible value of β and σ2 is equally likely. This is an example
of an improper prior, because if β can be any vector in Rk and σ2 any scalar in R+, the
prior distribution does not integrate to 1. Fortunately, we are still allowed to use it for
Bayesian inference as long as the posterior distribution is valid. 2

1Question Source: Gelman, A. (2013). Bayesian Data Analysis. Chapman & Hall/CRC.
2Reading on Improper Priors: Ewing (2020, March 16). Improper Prior — Ben Ewing: What is an

improper prior? https://improperprior.com/posts/2020-03-16-what-is-an-improper-prior/

https://improperprior.com/posts/2020-03-16-what-is-an-improper-prior/


(a) Posterior Predictive Simulation

Write out the steps involved in a posterior predictive check for a Bayesian Ordinary
Linear Regression model.

The posterior predictive distribution for Ordinary Linear Regression is a Normal
distribution due to properties of linear combinations of Gaussians 3. In the following
subparts, we will find the parameters of this Normal distribution.

(b) Deriving the Mean of the PPD for OLR

Show that E[ỹ|σ, y] = X̃β̂. Interpret your result in words.

3Proof: https://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/slides/lec19-slides.pdf
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(c) (optional) Deriving the Variance of the PPD for OLR

Show that Var[ỹ|σ, y] = σ2
(
I + X̃(XTX)−1X̃T

)
.

Thus, we have shown that the analytical form of the Posterior Predictive Distribu-
tion for Ordinary Linear Regression is:

P [ỹ|σ, y] ∼ N
(
X̃β̂, σ2

(
I + X̃(XTX)−1X̃T

))
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2. Interpreting the Logistic Regression Model

In this problem, we fit a logistic regression model on a subset of the famous iris dataset.
We have 100 samples of iris flowers, and measure their sepal length, sepal width, petal
length and petal width (sepals are the small, green growths at the base of a flower). The
response labels are whether they belong to the Virginica species (1) or the Versicolor
species (0).

Let’s say we first fit a Logistic regression model to predict the iris species, using only
the sepal features. Then, our data is represented in the following plot:

(a) Reformulating Logistic Regression

From lecture, we have seen that Logistic Regression applies the sigmoid inverse link
function to map a linear predictor xT

i β to probabilities in the following way:

σ(xT
i β) =

1

1 + e−xT
i β

= p ∈ (0, 1)

where p is the probability of the i-th data point belonging to class 1. Reformulate
Logistic Regression in terms of the log link function.
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(b) Interpreting a coefficient of a Logistic model

Suppose after fitting the aforementioned logistic regression model, you observe the
following output:

Assuming that the model is correct, use the derivation in Part (a) to write a one
sentence interpretation for the logistic model with respect to sepal length. What
happens to the interpretation if the model is misspecified?

(c) Goodness-of-Fit metrics for Frequentist GLMs

We now build another logistic model which additionally includes petal width as a
feature. You are presented with the following summary output:
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Which model has a better fit? How can you tell?

(d) Understanding the Data Generating Process

Looking at your finding from Part (c), your friend argues that the petal width

feature has a strong predictive effect that makes the second model better, so that
must mean it’s the only important factor differentiating the Virginica and Versicolor
species. Explain why this argument is flawed.
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3. Bootstrap and the Sample Maximum

Let X1, X2, ..., Xn represent i.i.d draws from a Uniform[0, 1] distribution. We wish to
use the bootstrap to understand the sampling distribution of the maximum,

Mn = max{X1, X2, ..., Xn}

We will use X∗
1 , X

∗
2 , ..., X

∗
n to denote the bootstrap resamples.

(a) Finding the Distribution of the Sample Maximum

Compute P [Mn ≤ t]. Use this to compute the density of Mn.
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(b) Accuracy of Bootstrap Max Estimates

Let M∗
n = max{X∗

1 , X
∗
2 , ..., X

∗
n}. Find P [M∗

n = Mn].

(c) Quality of Bootstrap Approximation of Mn

Is the distribution of M∗
n a good approximation for the distribution of Mn? Why is

this result to be expected?

Hint: Use the fact that limn→∞
(
1− 1

n

)n
= e−1.
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