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1. Rejection Sampling

Recall that in Bayesian inference, we want to understand the posterior distribution,
p(θ|X). Using Bayes’ Theorem, we have that

p(θ|X) ∝ p(X|θ)p(θ)
where p(X|θ) and p(θ) are the likelihood and prior, respectively. Last week, we looked at
solving for the exact posterior distribution via conjugate priors. However, this property
only applies to special pairs of likelihood and prior distributions. To find the posterior
distribution for any likelihood and prior pair, we turn to approximate inference, which
involves repeatedly drawing samples from the posterior distribution.

In this problem, we explore the properties of Rejection Sampling, a method which can
draw samples from a specified target distribution. The algorithm is defined as follows:

Algorithm 1 Rejection Sampling

Require: Target Distribution f(x), Proposal Distribution g(x)
Ensure: f(x) ≤ Mg(x) for all x and the support of g includes the support of f
repeat
Draw sample Xi from g(x)

Compute the ratio R = f(Xi)
Mg(Xi)

Draw sample U from Uniform[0, 1]
until U ≤ R
return Xi

(a) Setting a Proposal Distribution

We want to sample from the following, scaled unnormalized target distribution
(where M is a scalar):

f(θ) = Mlog (2 + sin(4θ))

for θ ∈ [0, 4]. Find a valid proposal distribution that can be used in a rejection
sampler for f .



(b) Understanding the Scaling Factor

Examine the following plot of the target distribution, for varying values of M .

What is special about the target distribution when M ≈ 0.23? How is this related
to the acceptance probability of a particular sample Xi?
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(c) Deriving the Acceptance Probability

Now, let’s consider a more general case, where f is some unnormalized target dis-
tribution and g is some proposal distribution. Under this scheme, what is the

probability that we accept a sample, i.e. the probability P
(
U ≤ f(Xi)

Mg(Xi)

)
? What is

the largest probability we can get by changing M?
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2. Gibbs Sampling for Gamma-Poisson model

When the dimension of the parameters is large, sampling from the posterior over all the
parameters θ is often difficult. The main insight behind Gibbs sampling is that it can be
much easier to sample the posterior over just a single parameter, P(θi | X, θ−i) (where
we use the index −i to mean all indices except for i). Gibbs sampling then iterates
through each parameter θi and samples from P(θi | X, θ−i). This loop is repeated, each
time conditioning on the newly sampled values. Iterating through each parameter θi and
sampling from P(θi | X, θ−i) is not the same thing as sampling from P(θ | X). However,
the good news is that given enough iterations, the former converges to the latter.

In this problem, we’ll use a Bayesian hierarchical model to model the number of failures,
Xi, for each of n power plant pumps1. Consider the following Gamma-Poisson model,

β ∼ Gamma(m,α)

θi | β ∼ Gamma(k, β), i = 1, . . . , n

Xi | θi ∼ Poisson(θi), i = 1, . . . , n,

where the θi are independent of each other and represent the rate of failures for each
power plant pump. The β and θi are unknown parameters, and m, α, and k are fixed
and known.

We’d like to infer the parameters β and the θ from the data X. That is, we’d like to
sample from the posterior distribution P(β, θ | X) using Gibbs sampling. This entails
deriving the posterior of each parameter, conditioned on the data and all the other
parameters.

(a) Drawing the Graphical Model

Draw a graphical model which best represents the specified Gamma-Poisson model.

1E I George, U E Makov, and A F M Smith. Conjugate likelihood distributions. Scandinavian Journal
of Statistics, 20:147–156, 1993.
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(b) Finding the Conditional Distribution of β

Let’s start with β. Derive P(β | θ1, . . . , θn, X1, . . . , Xn).

(c) Finding the Conditional Distribution of θi
Next, we’ll look at each θi. Derive P(θi | β, θ1, . . . , θi−1, θi+1, . . . , θn, X1, . . . , Xn)
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(d) Intuition for Gibbs Updates

Interpret the derivations in parts (b) and (c) in words.

(e) Implementing a Gibbs Sampler in Pseudocode

Using the posterior distributions you derived in the last two parts, write out the
algorithm for the Gibbs Sampler.
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3. Review of Markov Chains

Oh no! The Wi-Fi is down at campus libraries once again. Frustrated by your lack of
productivity, you leave to study somewhere else. The next day, you want to figure out
whether you should study at a campus library. To make this decision, you model the
Wi-Fi connection at the library as a Markov chain with two states: 1 for online and 0
for offline.

(a) Drawing a Markov Chain and its Transition Matrix

Your friend, Sarah, from IT staff tells you the following information:

• The chance of IT staff fixing the Wi-Fi when it is offline is 0.9

• The chance of the Wi-Fi failing after being online the previous day is 0.2

Using this information, draw a two-state Markov chain and write down its transition
matrix.
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(b) Finding a Steady-State Distribution

Looking at your Markov chain, you notice that it is has a finite state space, it is
irreducible2, and is aperiodic3. This means your Markov chain converges to some
steady-state distribution π⃗. In other words, you can find the expected long-run
proportion of time the Wi-Fi will fail! Write out and solve a system of equations
to find the steady-state distribution of this chain.

2Check: Every state can be reached by all other states, so this chain is irreducible.
3Check: Each state can be reached in odd and even time steps, so this chain is aperiodic.
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