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1. Multi-Armed Bandits and the UCB Algorithm

In the multi-armed bandits setting, we consider a decision-maker who is given K options
to choose from. We refer to these options as “arms”. Associated with each arm is
a probability distribution over rewards. Initially, this distribution is unknown to the
decision-maker. The decision-maker chooses an arm, usually referred to as pulling an
arm, and receives a reward sampled from the corresponding reward distribution. This
process is repeated over and over again.

Let’s begin by setting up some mathematical notation. Suppose you have a set of K
“arms”, A = {1, 2, ..., K}. Each arm a ∈ A has its own reward distribution Xa ∼ Pa

with mean µa = E[Xa]. Define the number of times arm a has been pulled up to and
including time t as Ta(t). In these problems we do not know µa but we would like to
efficiently find the arm with the maximum mean by creating an algorithm that balances
exploration of the arms with exploitation of the best possible arm. The efficiency of the
algorithm is measured by a theoretical quantity known as regret, which measures how
well the algorithm performs in expectation against an ‘oracle’ that knows the means of
all the arms and always pulls the arm with highest mean. In this discussion, we will
study the derivation of the UCB algorithm for the multi-armed bandit problem, which
uses the following bound:

P
[
µa < µ̂a,Ta(t) + Ca(Ta(t), δ)

]
> 1− δ

where Ca(Ta(t), δ) is the upper confidence bound.

To derive this bound, we will make use of Hoeffding’s Inequality, which tells us that if
random variables X1, X2, ..., Xn are independent and bounded between [a, b], then

P

[
1

n

n∑
i=1

(Xi − E[Xi]) ≥ ϵ

]
≤ exp

(
− 2nϵ2

(b− a)2

)



(a) Applying Hoeffding’s Inequality for Bounded Random Variables

Suppose that you know that the reward of any arm is between 0 and 1: Xa ∈ [0, 1].
Find a bound on the difference between µ̂a,Ta(t) and µa using Hoeffding’s Inequality.

(b) Connecting Hoeffding’s Inequality to UCB

Use the inequality derived in Part (a) to show that

P
[
µ̂a,Ta(t) − µa ≤ −Ca(Ta(t), δ)

]
≤ e−2Ta(t)Ca(Ta(t),δ)2
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(c) Solving for the Upper Confidence Bound

Find the value of Ca(Ta(t), δ) in terms of δ so that P
[
µa < µ̂a,Ta(t) + Ca(Ta(t), δ)

]
>

1 − δ holds. Plug this result into the inequality to derive the upper confidence
bound.

(d) Arm Selection with UCB

Suppose we set δ = 1
t3
. This controls the probability that the true mean µa is greater

than our upper confidence bound Ca(Ta(t), δ) on the estimated mean µ̂a,Ta(t). What
rule does the UCB algorithm use to choose an arm At at each iteration t?
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2. Regret of Explore-Then-Commit

Now, we will analyze the regret of the Explore-then-Commit algorithm for the multi-
armed-bandit (MAB) problem. We consider a stochastic MAB problem with a set ofK =
2 arms A = {1, 2}. Recall that each arm A ∈ A is associated with a reward distribution
XA ∼ PA, with corresponding mean µA = E [XA]. We will assume throughout this
problem that the first arm has higher average reward, i.e. µ1 > µ2. At each
round t = 1, . . . , n our algorithm chooses an arm At ∈ A and receives a corresponding
reward X

(t)
At

∼ PAt , independent of all previous rewards.

If we knew arm 1 has higher average reward, we would choose At = 1 each round in
order to maximize the expected total reward. In practice, however, we do not know
which arm is better since the means {µ1, µ2} are unknown. The expected reward of our
algorithm will always be less than nµ1, and we quantify the price we pay for not knowing
the better arm via the regret

Rn := nµ1 − E

[
n∑

t=1

X
(t)
At

]

In this problem we analyze the regret of the explore-then-commit (ETC) algorithm,
which is outlined as follows:

Algorithm 1 Explore-then-Commit (ETC) Algorithm

Inputinput Number of initial pulls c per arm t = 1, . . . , cK : Choose arm At = (t mod K)+1
Let Â ∈ {1, . . . , K} denote the arm with the highest average reward so far
t = cK + 1, cK + 2, . . . , n : Choose arm At = Â

As we can observe from the algorithm above, ETC proceeds in two phases. In the
exploration phase, each arm A ∈ A is pulled c times in order to produce an estimate
µ̂A = 1

c

∑
t≤cK:At=A X

(t)
A of the mean reward for that arm. In the commit phase, i.e. for

every t > cK, we choose At = Â, where Â := argmaxA∈A µ̂A is the apparent best arm
at the end of the exploration phase. In the first part of our analysis, we evaluate the
probability that we incorrectly identify arm 2 as the best arm, i.e. P(Â = 2).

(a) Bounding the Chance of Selecting a Sub-optimal Arm

Assume each reward is in the unit interval [0, 1], i.e. 0 ≤ XA ≤ 1 for A ∈ {1, 2}.
Show that

P
(
Â = 2

)
≤ exp

(
−c∆2

2

)
,

where ∆ = µ1 − µ2.
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(b) Regret Decomposition

Let m denote the number of times arm 2 has been pulled, up to and including time
n. Show

Rn = ∆E[m]

Hint: Start from the following:

Rn := nµ1 − E

[
n∑

t=1

X
(t)
At

]
= E

[
n∑

t=1

(
µ1 −X

(t)
At

)]

= E

[
n∑

t=1

I{At = 1}
(
µ1 −X

(t)
1

)]
+ E

[
n∑

t=1

I{At = 2}
(
µ1 −X

(t)
2

)]
.

Note also that for all t, At is independent of X
(t)
A for A ∈ {1, 2}.
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(c) Finding the Expected number of Sub-optimal Pulls

Show that if n > 2c, then:

E[m] = c+ (n− 2c)P
(
Â = 2

)

(d) Bounding the Regret of ETC

Show that:

Rn ≤ ∆

(
c+ (n− 2c) exp

(
−c∆2

2

))
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(e) Analyzing the Regret of ETC

Suppose you knew the sub-optimality gap ∆. Solve for a value of c which guarantees
that:

exp

(
−c∆2

2

)
≤ 1

n

For this number of exploratory pulls c, what is the upper bound on the regret from
Part (d)? Your answer should be in terms of n and ∆. Does this bound grow
linearly in n, or does it do better (i.e. is it sublinear)?
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