Data 102 Lecture 13:

Causal inference I

Unit overview

• Lecture 13: Problems with associations

• Lecture 14: Randomized experiments

• Lecture 15: Observational studies

Lecture 13 overview

- Correlation and causation
 - Examples of mistaking correlation for causation
 - Spurious correlations
 - Explanations of association, confounders
- Quantifying association
- Two "statistical paradoxes"
 - Simpson's paradox
 - The Red-Blue paradox

Simpson's paradox

Kidney stones

Treatment A Treatment B

Failure 273 289

Success 77 61

Kidney stones

	Treatment A helps	Treatment B helps	
All patients	83% (289 / 350)	78% (273 / 350)	
Large kidney stones	69% (55 / 80)	73% (192 / 263)	
Small kidney stones	87% (234 / 270)	93% (81 / 87)	

Gender bias in Berkeley graduate school admissions

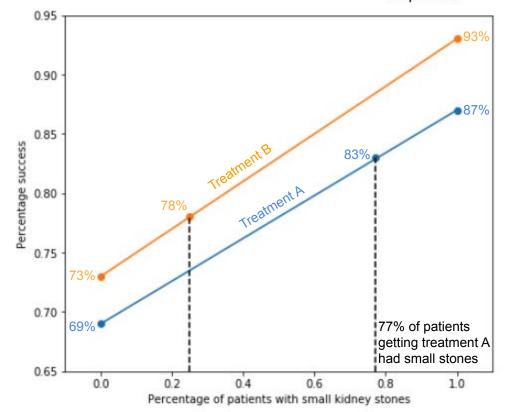
	All		Men		Women	
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Total	12,763	41%	8442	44%	4321	35%

From Wikipedia and Freedman, Pisani, Purves (2007)

Gender bias in Berkeley graduate school admissions

Damantusant	All		Men		Women	
Department	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Α	933	64%	825	62%	108	82%
В	585	63%	560	63%	25	68%
С	918	35%	325	37%	593	34%
D	792	34%	417	33%	375	35%
E	584	25%	191	28%	393	24%
F	714	6%	373	6%	341	7%

Explaining Simpson's paradox

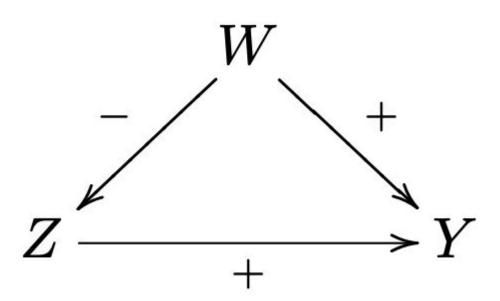

Large kidney stones 69% (55 / 80) **73%** (192 / 263)
Small kidney stones 87% (234 / 270) **93%** (81 / 87)

Treatment A helps

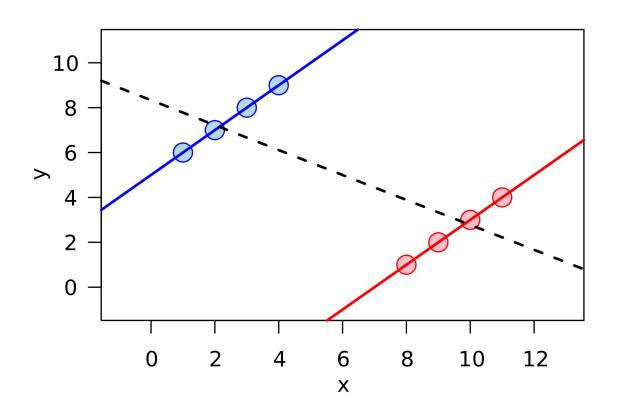
All patients

83% (289 / 350) 78% (273 / 350)

Treatment B helps



Explaining Simpson's paradox

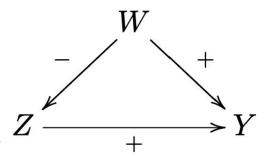

Z = 1(Treatment B)

Y = 1(Success)

W = 1(Small stones)

Simpson's paradox for continuous variables

X = years of employment


Y = salary

Color:

- \bullet Blue = CEOs
- Red = janitors

Simpson's paradox and causal inference

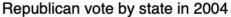
Simpson's paradox is about association. Nothing causal yet.

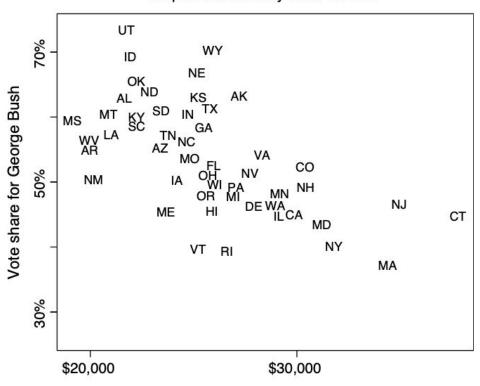
But based on the evidence, it is intuitive to choose Treatment B. Why?

- Treatment comes after the kidney stones chronologically, so the graph also reflects (partial) causal structure.
- Conditioning on W (kidney stone size) removes its influence
- After conditioning, if we believe that there are no significant differences between patients getting treatment A vs those getting treatment B, then any difference in success rate is purely due to the choice of treatment

May still have unobserved important variables...

Damantonant	All		Men		Women	
Department	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Α	933	64%	825	62%	108	82%
В	585	63%	560	63%	25	68%
С	918	35%	325	37%	593	34%
D	792	34%	417	33%	375	35%
E	584	25%	191	28%	393	24%
F	714	6%	373	6%	341	7%

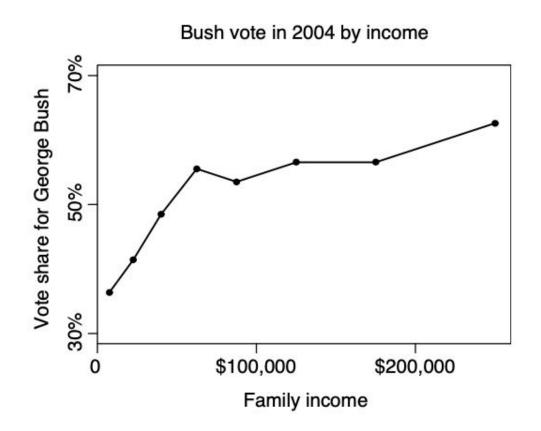

Possibility: For a given department, women applicants are more competent than male applicants In which case, there is still gender bias despite parity in admission rates

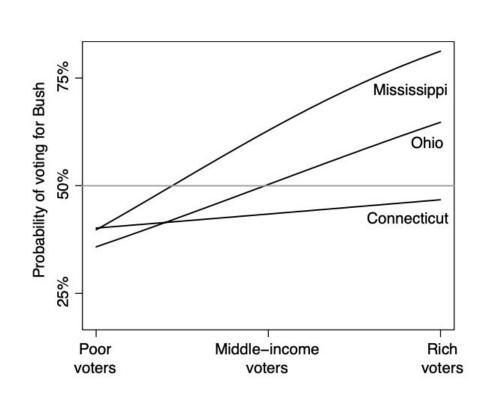

The Red-Blue paradox

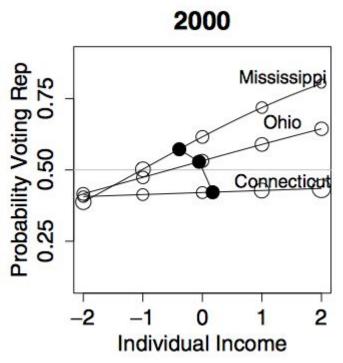
OK, but here's the fact that nobody ever, ever mentions— Democrats win rich people. Over \$100,000 in income, you are likely more than not to vote for Democrats. People never point that out. Rich people vote liberal. I don't know what that's all about.

—Tucker Carlson, 2007

Support for Republicans is negatively correlated with income for states

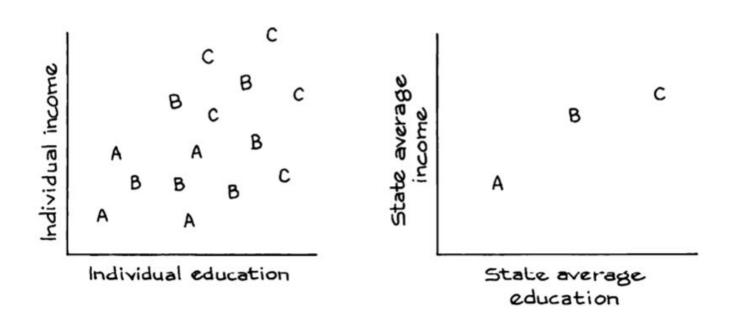



Average income within state


From Gelman (2009)

Support for Republicans is positively correlated with income for individuals

Resolving the paradox


From Gelman (2009) and Gelman (2014)

Misinterpreting the Red-Blue paradox is an e.g of an ecological fallacy

Ecological fallacy

When inferences about the nature of *individuals* are deduced from inferences about the *group* to which those individuals belong

Ecological correlations usually too big

