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Lecture overview

e GLMs from 10,000 feet
o Review of supervised learning
o  GLMs vs. black-box models
e Model interpretations
o Interpretations of GLMs when the model is correct
o Interpretations of GLMs when the model is “wrong”
e What makes a good model?

o  Goodness-of-fit and generalization

o Expanding and contracting GLMs

o  Goodness-of-fit checks for frequentist GLMs

o  Posterior predictive checks for Bayesian GLMs



GLMs from 10,000 feet



The 3 components of a GLM

A GLM comprises

e (Systematic component) A design matrix X and a coefficient vector S.
¢ (Random component) A noise distribution family fz( -|mean, other params)

e Alink function g so that g(E[Y”Xz]) = ‘Xz I’

Another way to write:

yi =9 "(X{ B)+ e, Clei| Xi] =0




Using a GLM to predict

This is a data generating model, but we can fit it to any collection of data points
by estimating the parameter f.

For any new data point with an unseen label, we may then predict the label via

Ui = 9_1(X;FB)



GLM is a “grey box” supervised learning model

Feature vector Output “label”

Neural network

Random forest

Gradient-boosted trees



The supervised learning pipeline

Step 1: RaT_ld?m Step 2: Fit models Step 3: Select model Step 4: Evaluate
sample splitting on training set using validation set model using test set
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GLMs vs. black box models

Pros

Can make use of subject
matter knowledge to increase
sample efficiency /
extrapolate

Models are naturally
interpretable (in terms of
the fitted vector of
coefficients)

“Easier” uncertainty
quantification

Cons

Less flexible than black box
models, so may not fit the data
well enough

Requires more trial and
error to fit a good model



Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.




Notebook Demo 1: RF vs GLM



GLM interpretations



Interpreting the fitted coefficients B

negbin model = sm.GLM(
ok_turbines.totals, sm.add constant(ok turbines.year),
family=sm.families.NegativeBinomial()

)

negbin results = negbin model.fit()

print(negbin results.summary())

Generalized Linear Model Regression Results

Dep. Variable: totals No. Observations: 17
Model: GLM Df Residuals: 15
Model Family: NegativeBinomial Df Model: 1
Link Function: log Scale: 1.0000
Method: IRLS Log-Likelihood: -134.14
Date: Wed, 17 Feb 2021 Deviance: 7.1483
Time: 12:51:51 Pearson chi2: 1.90
No. Iterations: 11
Covariance Type: nonrobust

coef std err z P>|z| [0.025 0.975]
const 4.2059 0.544 7.725 0.000 3.139 5.273
year 0.2389 0.043 5.514 0.000 0.154 0.324

log(turbines_built) ~ 0.24 - (year — 2000) + 4.2



Interpreting the fitted coefficients E

log(turbines_built) ~ 0.24 - (year — 2000) + 4.2

“Number of turbines built increases by roughly 24% each year on average”

In order to make sense of the interpretation, need to understand the
approximation.

3 parts to the approximation

e Rounding error
e Noise in the response
e Estimation error



Classical frequentist view: A correct model

Assume that the model specification is correct, i.e. there is a true | such that the

data is generated from

yi =g (X[ Bo) + &,

‘E[eilX’i] =0

Then we have statistical theory that controls the estimation error B — Bo

Asymptotically,

V(B — Bo) = N(0, I, (Bo) ™)



Classical frequentist view: A correct model

negbin model = sm.GLM(
ok_turbines.totals, sm.add constant(ok turbines.year),
family=sm.families.NegativeBinomial()

)

negbin results = negbin model.fit()

print(negbin results.summary())

Generalized Linear Model Regression Results

Dep. Variable: totals No. Observations: 17
Model: GLM Df Residuals: 15
Model Family: NegativeBinomial Df Model: 1
Link Function: log Scale: 1.0000
Method: IRLS Log-Likelihood: -134.14
Date: Wed, 17 Feb 2021 Deviance: 7.1483
Time: 12:51:51 Pearson chi2: 1.90
No. Iterations: 11
Covariance Type: nonrobust

coef std err z P>|z| [0.025 0.975]
const 4.2059 0.544 7.725 0.000 3.139 5.273
year 0.2389 5.514 0.000 0.154 0.324




Interpreting the fitted coefficients E

log(turbines_built) ~ 0.24 - (year — 2000) + 4.2

“Number of turbines built increases by roughly 16% to 32% each year on
average”

In order to make sense of the interpretation, need to understand the
approximation.

3 parts to the approximation

e Rounding error
e Noise in the response
e KEstimation error



Model misspecification

Notebook demo 2



Model misspecification
Model misspecification means that the data generating distribution q(-) does not
actually lie in the GLM family we are trying to fit

Under some assumptions, the fitted coefficients are an estimate of the “projected model”, i.e.
the closest p(-| ) to the the data generating distribution q(-)

Projected model may be meaningful, or not...



Bayesian view: Philosophically different, practically similar

Philosophical differences

e Don’t assume a true model 3
e Instead, fitted model expresses our posterior belief, contingent on our

assumptions
e Allows for assumptions not revealed in the data
e A “poor fit” does not necessarily mean that the model is useless

Practical similarities

e If model does not fit the data well, then we should question it
e Need to be able to diagnose whether the model is “good”



What makes a good model?



Goodness-of-fit: How
well the model fits the
training data

Training loss

Visual inspection

Other statistics:

deviance, chi-squared...

Goodness-of-fit and generalization

Generalization: How
well the model fits the
test data

Test loss



Expanding and contracting models

Two ways to expand the model

e Adding new features:
2 .2
1,2 —7 X1,X2,L1,Loy,T1X2, ...

e Making the noise model more flexible:
o Gaussian -> t-distribution
o Poisson -> negative binomial

Conversely, can contract the model by dropping features, etc.



Need to balance underfitting vs overfitting

The more we expand the model...
... the better it fits the data (less bias)

... the better it fits noise in the data (more variance)

Bias-variance tradeoff

< underfitting

Get the bias-variance tradeoff I
. Total error

Prediction error

Kubben P, Dumontier M, Dekker
A, editors. Fundamentals of
Clinical Data Science
[Internet]. Cham (CH) :
S$ringer; 2019.

Model complexity



Goodness-of-fit for frequentist GLM

Generalized Linear Model Regression Results

Dep. Variable: totals No. Observations: 17
Model: GLM Df Residuals: 15
Model Family: NegativeBinomial Df Model: 1
Link Function: log Scale: 1.0000
Method: IRLS |[Log-Likelihood: -134.14
Date: Fri, 19 Feb 2021 Deviance: 7.1483
Time: 13:45:05 Pearson chi2: 1.90
No. Iterations: 11
Covariance Type: nonrobust

coef std err z P>|z| [0.025 0.975]
const 4.2059 0.544 7.725 0.000 3.139 5.273
year 0.2389 0.043 5.514 0.000 0.154 0.324

Neg of training loss

Statistics for testing
hypothesis that
“model fits data well”



Goodness-of-fit for frequentist GLM

Generalized Linear Model Regression Results

Dep. Variable: totals No. Observations: 17
Model: GLM Df Residuals: 15
Model Family: NegativeBinomial Df Model: 1
Link Function: log Scale: 1.0000
Method: IRLS Log-Likelihood: -134.14
Date: Fri, 19 Feb 2021 Deviance: 7.1483
Time: 13:45:05 Pearson chi2: 1.90
No. Iterations: 11

Covariance Type: nonrobust

Generalized Linear Model Regression Results

Dep. Variable: totals No. Observations: 17
Model: GLM Df Residuals: 15
Model Family: Poisson Df Model: 1
Link Function: log Scale: 1.0000
Method: IRLS Log-Likelihood: -755.42
Date: Fri, 19 Feb 2021 Deviance: 1366.3
Time: 13:45:05 Pearson chi2: 1.20e+03
No. Iterations: 5

Covariance Type: nonrobust



Goodness-of-fit for frequentist GLM

Generalized Linear Model Regression Results

Dep. Variable: totals No. Observations: 17
Model: GLM Df Residuals: 15
Model Family: NegativeBinomial Df Model: 1
Link Function: log Scale: 1.0000
Method: IRLS Log-Likelihood: -134.14
Date: Fri, 19 Feb 2021 Deviance: 7.1483
Time: 13:45:05 Pearson chi2: 1.90
No. Iterations: 11

Covariance Type: nonrobust

Generalized Linear Model Regression Results

Dep. Variable: totals No. Observations: 17
Model: GLM Df Residuals: 15
Model Family: Gaussian Df Model: 1
Link Function: identity  Scale: 1.1810
Method: IRLS Log-Likelihood: -24.472
Date: Fri, 19 Feb 2021 Deviance: 17.716
Time: 13:45:05 Pearson chi2: 17.7
No. Iterations: 3

Covariance Type: nonrobust



Goodness-of-fit for Bayesian GLM: Posterior predictive checks

Donald Rubin Andrew Gelman



Goodness-of-fit for Bayesian GLM: Posterior predictive checks

Basic principle:

“Given observed data, X , , what would we expect to see in hypothetical
replications of the study that generated X , ? Intuitively, if the model
specifications are appropriate, we would expect to see something similar to what

> »

we saw this time, at least similar in ‘relevant ways’.
Donald Rubin (1984)

Because we are being Bayesian, we do replications conditioned on having seen the
data. I.e. we use the posterior predictive distribution

p(yrep|X7 yobs) — /p(yrep|X> ﬁ)p(5|X7 yobs)dﬁ



Goodness-of-fit for Bayesian GLM: Posterior predictive checks

Algorithm:

1. Simulate B~ p(BIX.y)
2. Simulatey, ~pyIX.,)
3. Repeat B times

Notebook demo



Summary

Beginner data scientist Intermediate data scientist
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Resources

GLMs

e Eduardo Garcia Portugués’s notes:

https://bookdown.org/egarpor/PM-UC3M/

Posterior predictive checks:

e Jeffrey B. Arnold’s notes: https://jrnold.github.io/bayesian notes/

e David Blei’s notes:
https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/ppc.

pdf



https://bookdown.org/egarpor/PM-UC3M/
https://jrnold.github.io/bayesian_notes/
https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/ppc.pdf
https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/ppc.pdf

