Lecture 22: Markov Decision Processes

Jacob Steinhardt

November 10, 2020

J. Steinhardt MDPs November 10, 2020 1/24

Complex Decision-Making

Previous lectures have explored several themes:
@ Decision-making
@ Time dynamics and statefulness (e.g. Markov models)
@ Value of information (e.g. multi-armed bandits)

Will combine all of these with Markov decision processes (stateful
decision-making) and reinforcement learning (stateful decision-making with
uncertainty).

J. Steinhardt MDPs November 10, 2020 2/24

Roadmap

@ Review: dynamic programming
@ Markov decision processes

o Bellman equations
e Solution via dynamic programming

@ Reinforcement learning (next lecture)

J. Steinhardt MDPs November 10, 2020 3/24

Dynamic programming warm-up: Fibonacci

Fibonacci sequence: F, = Fp_1+ Fp_2 (Fp =0, F =1)

Recursive function:
def fib(n):
if n <= 1:
return n
else:
return fib(n-1) + fib(n-2)

What happens if we call fib (50) ?

J. Steinhardt MDPs

November 10, 2020

4/24

Solution 1: Memoization

Remember answers ina dict:
memo_dict = dict ()
def fib(n):
if n in memo_dict.keys() :
return memo_dict [n]
elif n <= 1:

ans = n
else:

ans = fib(n-1) + fib(n-2)
memo_dict[n] = ans

return ans

J. Steinhardt MDPs November 10, 2020 6/24

Solution 1: Memoization

Remember answers in a dict:

memo_dict = dict ()
def fib(n):
if n in memo_dict.keys() :
return memo_dict [n]
elif n <= 1:

ans = n
else:

ans = fib(n-1) + fib(n-2)
memo_dict[n] = ans

return ans

@ Can use decorators for slick code
@ Slow (dict lookup each time)

J. Steinhardt MDPs November 10, 2020 6/24

Solution 2: Dynamic Programming

Can replace with for loop if we do things in right oder:
import numpy as np
n_max = 50
fibs = np.array (n_max)
fibs[0], fibs[1l] = 0, 1
for n in range (2, n_max):
fibs[n] = fibs[n-1] + fibs[n-2]

J. Steinhardt MDPs

November 10, 2020

7/24

Solution 2: Dynamic Programming

Can replace with for loop if we do things in right oder:

import numpy as np
n_max = 50
fibs = np.array (n_max)
fibs[0], fibs[1l] = 0, 1
for n in range (2, n_max):
fibs[n] = fibs[n-1] + fibs[n-2]

@ Pro: fast, low-memory

@ Con: more thinking; need to find linear structure

J. Steinhardt MDPs

November 10, 2020

7/24

Harder example: car and gas stations

@@j
c.z ;_ 2 3 M n

@ Locations 0,...,n

@ Car starts at location 0, wants to get to location n

@ Each location i: gas station selling g; units of gas at ¢; dollars per unit
@ 1 unit of gas to move 1 unit right

Challenge:
How much gas should we buy at each location to minimize total cost?

J. Steinhardt MDPs November 10, 2020 8/24

Solution via recursion

@ State: (location, gas left in tank)

@ Define f(loc, gas) = minimum cost to get to end given current state
(“cost-to-go”)
@ Two options: buy 1 unit of gas (stay where we are), or go forward

a BO8E
® o d 'L! n

Lt 3

J. Steinhardt MDPs November 10, 2020 9/24

Solution via recursion

@ State: (location, gas left in tank)

@ Define f(loc, gas) = minimum cost to get to end given current state
(“cost-to-go”)

@ Two options: buy 1 unit of gas (stay where we are), or go forward

def f(loc, gas):
if loc == n:
return 0
if gas < 0:
return -np.inf
costl = f(loc, gas+l) + pricelloc]
cost2 = f(loc+l, gas — 1)
return min (costl, cost2)

J. Steinhardt MDPs November 10, 2020 9/24

Solution via dynamic programming

f = np.zeros(shape=(n+1l,n+1))
for loc in range(n-1, -1, -1):
for gas in range(n, -1, -1):
costl = f[loc, gas+l] + pricefloc]
cost2 = f[loc+tl, gas—1]
f[loc, gas] = min(costl, cost2)

J. Steinhardt MDPs

November 10, 2020

10/24

Solution via dynamic programming

f = np.zeros(shape=(n+1l,n+1))
for loc in range(n-1, -1, -1):
for gas in range(n, -1, -1):

costl = f[loc, gas+l] + pricefloc]
cost2 = f[loc+tl, gas—1]
f[loc, gas] = min(costl, cost2)

@ Gas station problem is special case of Markov decision process

@ Will define these next and see how to formulate a general dynamic
programming solution

J. Steinhardt MDPs November 10, 2020

10/24

DS 102: Data, Inference,
and Decisions

Lecture 23: Markov Decision Processes

Jacob Steinhardt
University of California, Berkeley

Slides thanks and credit:
Fernando Perez, Anca Dragan, Dan Klein, Pieter Abbeel,
and the Berkeley CS188 team: ai.berkeley.edu.

Markov Decision Processes

An MDP is defined by:

— Asetofstatess € S

— Asetofactionsa € A

— A transition function T(s, a, s’)
« Probability that a from s leads to s’, i.e., P(s'| s, a) 2
« Also called the model or the dynamics

— Areward function R(s, a, s’)
« Sometimes just R(s) or R(s’)

— A start state

— Maybe a terminal state

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
(if there is no wall there)
= 10% of the time, North takes the agent West; 10% East
= If there is a wall in the direction the agent would have been
taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

What is Markov about MDPs?

+ “Markov” generally means that given the present state, the
future and the past are independent

* For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Sf,+1 = 3/|St =55, A= ap, Si—1 = 81-1, Ar—1,... S0 = So)

Andrey Markov
P(Si41 =55 =54, Ar = ar) (1856-1922)
» This is just like search, where the successor function could
only depend on the current state (not the history)

Policies

In deterministic single-agent search
problems, we want an optimal plan, or
sequence of actions, from start to a goal

For MDPs, we want an optimal
policy m: S — A
— A policy 1 gives an action for each state
— An optimal policy is one that maximizes
expected utility if followed X i)
— An explicit policy defines a reflex agent Optimal policy when R(S_’ 3,5')=-0.03
for all non-terminals s

Optimal Policies

Discounting

+ It's reasonable to maximize the sum of rewards
» It's also reasonable to prefer rewards now to rewards later
» One solution: values of rewards decay exponentially

N{ L

Y Y

Worth Now Worth Next Step Worth In Two Steps

Optimal Quantities

= The value (utility) of a state s:
V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):
Q(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

= The optimal policy:
1 (s) = optimal action from state s

sisa
state

(s,a)isa
g-state

(s,a,s")isa
transition

Values of States

* Recursive definition of value:

V¥(s) = max Q(s,a)

Q* (5, {l) :Z T(S, a, S/)[R(S, a, Sl)—|‘ v V* (S,)} ‘ >

V*(s) = maaXZT(s, a,5')[R(s,a,8") +yV*(s)

Solving the recursion

Recursion for V* is circular:

V*(s) = mgxz T(s,a,8)[R(s,a,8") +yV*(s)]

J. Steinhardt MDPs November 10, 2020 21/24

Solving the recursion

Recursion for V* is circular:

V*(s) = mgxz T(s,a,8)[R(s,a,8") +yV*(s)]

@ Not a problem for gas stations because states were totally ordered
@ Can’t assume this in general
@ Solution: add a time component

V*(s,t) = msz T(s,a,8)[R(s,a,8) +yV*(s,t—1)],
S/

V*(s,0) =0

J. Steinhardt MDPs November 10, 2020 21/24

Solving the recursion

Recursion for V* is circular:

V*(s) = mgxz T(s,a,8)[R(s,a,8") +yV*(s)]

Not a problem for gas stations because states were totally ordered

Can't assume this in general
Solution: add a time component

V*(s,t) = msz T(s,a,8)[R(s,a,8) +yV*(s,t—1)],
S/

V*(s,0) =0

Time t creates total ordering!
Can recover V*(s) by taking t — oo

J. Steinhardt MDPs November 10, 2020 21/24

Value learning via dynamic programming

V = np.zeros (shape=(num_states, t_max))
for t in range(l, t_max):

for s in range (num_states) :
Vis, t] = max([sum([T(s, a, s2) * (R(s, a, s2)
+ gamma * V[s2, t-117)
for s2 in num_states])
for a in num_actions])

J. Steinhardt MDPs November 10, 2020 22/24

Value learning via dynamic programming

Can save memory with “sliding window” trick:

V = np.zeros (shape=(num_states, t_max))
for t in range(l, t_max):

for s in range (num_states) :
Vis, t] = max([sum([T(s, a, s2) * (R(s, a, s2)
+ gamma * V[s2, t-117)
for s2 in num_states])
for a in num_actions])

J. Steinhardt MDPs November 10, 2020

22/24

Value learning via dynamic programming

Can save memory with “sliding window” trick:

V = np.zeros (num_states)
for t in range(l, t_max):
V_old = np.copy (V)
for s in range (num_states) :
Vis] = max ([sum ([T (s, a, s2) (R(s, a, s2)
+ gamma * V_old[s2])
for s2 in num_states])
for a in num_actions])

J. Steinhardt MDPs November 10, 2020

22/24

Exploiting monotonicity

Since updates monotonically approach V*, can update in place:

V = np.zeros (num_states)
for t in range(l, t_max):

for s in range (num_states):
Vis] = max ([sum ([T (s, a, s2) (R(s, a, s2)
+ gamma * V([s2])
for s2 in num_states])
for a in num_actions])

J. Steinhardt MDPs November 10, 2020 23/24

Defined Markov decision process:
o states, actions, (stochastic) transitions, rewards

@ Recursion (Bellman equations)

@ Efficient solution via dynamic programming

@ Even more efficient solution exploiting monotonicity (in-place updates)
°

Next lecture: what if transitions need to be learned? (RL)

J. Steinhardt MDPs November 10, 2020 24/24

