
DS 102 Data, Inference, and Decisions Spring 2021

Lecture 23: Reinforcement Learning
Lecturer: Ramesh Sridharan

These notes are from a previous iteration of Data 102: the ideas are the same, but they may
contain some additional content that wasn’t covered in depth this semester, and may use
slightly different notation (e.g., P(s′ | s, a) for transition probabilities).

23.1 Dynamic Programming

Dynamic programming is a general tool that makes recursion more efficient by intelligently reusing
the answer to previous function calls.

We will build up the idea of dynamic programming by considering a simple form of recursion: the
Fibonacci numbers. The sequence of Fibonnaci numbers is defined by:

f(0) = 0

f(1) = 1

f(n) = f(n− 1) + f(n− 2) ∀ n > 1

A naive program to compute this would have the following structure:

def f i b (n) :
i f n == 0:

re turn 0
i f n == 1:

re turn 1
e l s e :

re turn f i b (n−1) + f i b (n−2)

The recursive tree for this function call will explode fairly quickly. For example, what happens if
we try to call fib(50)?

fib(50)

ss ++
fib(49)

xx &&

fib(48)

xx &&
fib(48) fib(47) fib(47) fib(46)

...
...

...
...

23-1

Lecture 23: Reinforcement Learning 23-2

This exponential blow-up in the computation tree is not ideal for processors, memory usage, et
cetera. However, one key observation we can make is that the same computation gets made several
times; for example, fib(48) gets computed times in the tree.

Memoization improves upon this naive recursive approach by caching and reusing the results of
previous function calls. The memoized version of our Fibonacci function would look something like
this:

memo = d i c t ()
def f i b (n) :

i f n in mem. keys () :
re turn memo[n]

i f n == 0:
memo[n] = 0

i f n == 1:
memo[n] = 1

e l s e :
memo[n] = f i b (n − 1) + f i b (n − 2)

re turn memo[n]

One nice this about the memoization approach is that it not too difficult to adapt a naive recursive
approach to a memoized approach. In fact, in Python it is particularly easy: there are function
decorators (e.g. @memoize) that will automatically memoize a recursive function. The memoized
version of a recursive function will blow-up only linearly rather than exponentially. While this is a
big win in terms of the amount of computation performed, memoization can still be problematic in
cases where the cache is large and the look-up step is very slow.

Dynamic programming is another improvement on top of memoization. Dynamig programming
“unrolls” the recursion into a for-loop by performing the computations in such a way that the
results of any previous computations required for the current step of the loop are always known.
This is preferable over naive recursions since it reuses computation, and over memoization since it
bypasses the need for performing look-ups. For our Fibonnaci example, a dynamic programming
approach would have the following structure:

f i b = zeros (shape=(n+1, 1))
f i b [0] = 0
f i b [1] = 1
fo r n in range (2 , n+1):

f i b [n] = f i b [n−1] + f i b [n−2]

Dynamic programming is fast compared to other approaches to recursion because it reduces the
problem to a loop. However, in order to take a dynamic programming approach, the computation
must be laid out in some nice way. For some problems, determining the right order to do the
computations is sufficiently complicated that one might prefer the ease of a memoization approach
even though its use of a cache is slower.

We will end this section with a slightly more complicated dynamic programming example that build
towards MDPs and RL. For this example, suppose we are driving a car along a linear route and are

Lecture 23: Reinforcement Learning 23-3

trying to pick the optimal set of gas stations at which to stop. We start at location 0 and our goal
is to reach location N (which is N units to our right) without running out of gas. It costs 1 unit
of gas to move 1 unit to the right, and each gas machine at location i has gi units of gas available
for purchase for a cost of ci dollars per unit. How much gas should we buy at each location to
minimize the total cost?

We can frame this as a dynamic programming problem. First, we should consider what state we
need to keep track of to make a decision at each step. In this case, the two factors that affect our
decision are our current location and how much gas is currently in our tank. If we were to solve
this using recursion, our function f(loc, gas) should return the minimum cost to get to the end,
given the current state (loc, gas). This is an example of a cost-to-go function, which we will see
again in several of the upcoming MDP and RL examples. The pseudo-code for a naive recursive
approach would have the following structure:

def f (loc , gas) :
Base case : we a l ready reached the goal
i f l o c == N:

re turn 0
Base case : we ran out of gas
i f gas < 0:

re turn math . i n f

Option 1: Buy 1 un i t of gas and s tay where we are
cos t1 = f (loc , gas + 1) + p r i c e [loc]
Option 2: Go forward 1 un i t
cos t2 = f (loc + 1 , gas − 1)

re turn min(cost1 , cos t2)

Note that if we start at the end and work our way backwards, we will always either already know
the answer (e.g. in the case of loc == N) or have previously done the computations required to
figure out the answer. Thus, a dynamic programming approach would have the following basic
structure, with one or two additional edge cases:

f = zeros (shape=(N + 1 , N + 1))
fo r loc in range (N, 0 , −1):

f o r gas in range (N, 0 , −1):
cos t1 = f [loc , gas + 1] + p r i c e [loc]
cos t2 = f [loc + 1 , gas − 1]
f [loc , gas] = min(cost1 , cos t2)

23.2 Markov Decision Processes

MDPs generalize the dynamic programming idea of working backwards to stochastic decision-
making processes.

Lecture 23: Reinforcement Learning 23-4

An MDP is defined by a sequence of states s ∈ S, a set of actions a ∈ A, and a transition function
T (s, a, s′) that gives the probability that the action a from state s leads to the new state s′ (e.g.
P(s′ | s, a), which is also called a model or the dynamics). We usually also have some reward
function R(s, a, s′), and would like to have a large cumulative reward. For example, the current
state s might denote where we currently are in the world, the action a might specify the direction
in which we’d like to move, and the transition function would give the probability distribution over
what outcome actually happens when we try to move this direction from our current location.

The “Markov” in Markov Decision Process refers to the fact that the transition function only depends
on the current state and the current actions, and not on the entire history of the process. One
intuition is to think of an MDP like a stochastic version of a search problem where we’re trying to
make an optimal action at each step based on all the things that could happen in the future (e.g.
trying to decide what move to make in a Chess game based on possible reactions to each move),
but in an MDP there is randomness involved in the potential future outcomes.

Often, we are interested in understanding what actions we should take at each step of the MDP. A
policy is a function π : S → A that specifies an action for each state. For any policy, π, it makes
sense to think about what the expected reward is under that policy, or about the distribution over
rewards under that policy. An optimal policy, denoted π∗, is the policy that maximizes the expected
reward. Typically, we are trying to maximize the expected cumulative reward over all time steps. It
is also reasonable, though, to prefer rewards now to rewards later. Discounting accounts for this
by down-weighting future time steps by some multiplicative factor γ, which can be interpreted as
accounting for some chance γ that the process could end at every step. Practically, discounting is
often used because it help algorithms converge.

23.3 Solving Markov Decision Processes with Dynamic Programming

There are several quantities of interest when working with MDPs, including:

• The value (or utility) of a state s, denoted V ∗(s), is the expected utility when starting in state
s and acting optimally

• The value (or utility) of a q-state (s, a), denoted Q∗(s, a), is the expected utility starting out
taking action a from state s and thereafter acting optimally

Note that the Q∗ function is useful compared to V ∗ since the value function tells us what happens
when we act optimally, but does not help us understand which action to take. If we know the Q∗

function, we can determine a policy π∗.

We can define these quantities recursively. For example, we can write the value function as

V (s) = max
a∈A

∑
s′∈S

P(s′ | s, a) ·
(
R(s, a, s′) + V (s′)

)
,

or if we want to do discounting we can incorporate the discounting factor γ,

V (s) = max
a∈A

∑
s′∈S

P(s′ | s, a) ·
(
R(s, a, s′) + γV (s′)

)
.

Lecture 23: Reinforcement Learning 23-5

Since this is a recursive formula, we can start thinking about what recursive approaches to solv-
ing for the value function would look like. In order to avoid infinite recursion issues due to the
randomness in the problem, we introduce a time horizon T :

def V(s , t) :
i f t == T :

re turn 0
e l s e :

va l = −math . i n f
f o r a in a c t i o n s :

v = sum([P(s ’ | s , a) (R(s , a , s ’) + gamma * V(s ’ , t + 1))
f o r s ’ in s t a t e s])

va l = max(val , v)
re turn va l

We could use memoization on this recursion, but we could also think about using a dynamic pro-
gramming approach instead. This might looks something like the following pseudo-code:

V = zeros (shape=(S , T+1))
fo r t in range (T−1, 0 , −1):

f o r s in s t a t e s :
V[s , t] = max([

sum([P(s ’ | s , a) (R(s , a , s ’) + gamma * V[s ’ , t + 1])
f o r s ’ in s t a t e s])

f o r a in a c t i o n s])

This lets us compute the value function over some time horizon. We can improve the efficiency of
this approach by noting that we do not actually need to store the full V array; at time t we only
ever need to know the value function at time t+ 1. This means that we can just store a small slice
of V and run the algorithm for a very long time horizon without using additional memory. This
algorithm is known as the Value Iteration algorithm.

23.4 Q-iteration

Recall that, in addition to the value function V , we defined the Q function where Q(s, a) is the ex-
pected reward if we start from state s taking action a, and then follow the optimal policy thereafter.
Compared to V , Q is useful since it helps us understand which actions are optimal. However, the
value and Q functions are very closely related:

V (s) = max
a∈A

Q(s, a),

Lecture 23: Reinforcement Learning 23-6

and

Q(s, a) =
∑
s′∈S

P(s′ | a, s)(R(s′, a, s) + γV (s′))

=
∑
s′∈S

P(s′ | a, s)
(
R(s′, a, s) + γmax

a′∈A
Q(s′, a′)

)
.

We can approach computing Q the same way we computed V in the previous section, namely by
adding a time component and using dynamic programming: Q0(s, a) = 0 and

Qt+1(s, a) =
∑
s′∈S

P(s′ | a, s)(R(s′, a, s) + γmax
a′∈A

Qt(s
′, a′)).

23.5 Q-Learning

Value and Q-Iteration both assume that the MDP is fully known. What if the transition dynamics
P(s′ | a, s) are unknown? It turns out that, even when the transition probabilities are unknown, we
can still estimate Q from data. This is called Q-learning.

Suppose we have data about several different trajectories, where a trajectory is a sequence

s0, a0, s1, a1, . . . , si, ai, . . .

that comes from some policy π : S → A. After each state-action pair (st, at) in a trajectory, we can
update our estimate of Q:

Q(st, at) = (1− α)Qold(st, at) + α(R(st+1, at, st) + γmax
a′∈A

Qold(st+1, a
′)).

This update is a weighted average of our previous estimate of the Q value and something looks
similar to the update we used in Q-iteration. In fact, it turns out that the right-hand term of this
Q-learning update is equal to the Q-iteration update in expectation:

Est+1 [R(st+1, at, st) + γmax
a′∈A

Qold(st+1, a
′)] =

∑
s′∈S

P (s′|at, st)(R(s′, at, st) + γmax
a′∈A

Qold(s
′, a′)).

Thus, our Q-learning update slowly averages in new estimates of the Q-function (by was of “stochas-
tic” Q-iteration updates), while the weighted average with our previous estimate of the Q value
helps stabilize our estimates.

There are convergence theorems which specify conditions under which this Q-learning algorithm
will converge to the true Q-value function for the optimal policy. These theorems have two im-
portant requirements. First, they typically require that α → 0 over time. In practice, however, it
usually works to fix α to a small value. Second, both in theory and in practice we need to make
sure to explore the state space enough. There is an analogy to the multi-armed bandits setting
from Lectures 17 and 21 where we needed to visit all of the states sufficiently often. One way to
accomplish this is to explicitly define an exploration policy that does a good job of visiting all of

Lecture 23: Reinforcement Learning 23-7

the states, but it can be challenging to design such a policy by hand if there are some states that
can only be reached by very specific actions/trajectories. An alternative approach is to follow the
induced policy from the current estimate of Q(s, a), which means taking the action that looks the
best given the current estimate of the Q function. However, this approach can get stuck and end
up not exploring enough; it is better to make sure that some fraction of the time we take a random
action. It often also helps to initialize Q0(s, a) to some optimistic (i.e. very large) value, which is
similar in spirit to the UCB algorithm in that exploring states which have not yet been visited very
often is incentivized.

23.6 Function Approximation

Q-learning allowed us to improve upon the Q-Iteration algorithm by incorporating learning, but
both of these approaches will do poorly at handling large state spaces. In particular, each Q-learning
update only updates Q(s, a) for a single state-action pair, so if we have a very large number of states
we will not be able to sufficiently explore them all. Intuitively, we would like to somehow update
Q(s, a) for all similar state-action pairs at once. We accomplish this by using function approxima-
tion: we parameterize Q as Qθ(s, a). For example, we often model Q as a neural network, and θ
are the parameters of the network.

Recall our Q-learning update,

Q(st, at) = (1− α)Qold(st, at) + α(R(st+1, at, st) + max
a′∈A

Qold(st+1, a
′))

= Qold(st, at) + α

(
R(st+1, at, st) + max

a′∈A
Qold(st+1, a

′)−Qold(st, at)
)
,

where the second form of the update emphasizes the similarity to a stochastic gradient descent
update with step size α. Instead of updating Q directly as in Q-learning, our new update will
update θ:

θ = θold + α

(
R(st+1, at, st) + max

a′∈A
Qθold(st+1, a

′)−Qθold(st, at)
)
∇θQθold(st, at).

This function approximation approach is an adaptation of Q-learning which is much better able to
handle large state spaces.

One (not entirely rigorous) way to intuit the form of the update rule for θ is to imagine that we
are preforming a prediction task where we would like to predict the Q value and we are using
squared-error as our loss:(

R(st+1, at, st) + max
a′∈A

Qθold(st+1, a
′)−Qθold(st, at)

)2

.

If we imagine that we are only updating the θold of the last term Qθold(st, at) and take a gradient,
we get

−2
(
R(st+1, at, st) + max

a′∈A
Qθold(st+1, a

′)−Qθold(st, at)
)
∇θQθold(st, at),

so that taking one gradient step would be equivalent to using our update rule for θ with α = 2.

Lecture 23: Reinforcement Learning 23-8

23.7 Temporal Difference Learning

It is often the case that we only see a reward at the very end of a trajectory. For example, if we want
to use RL to play chess or Go, we do not see rewards until the end of the game when we either
win or lose. This leads to a credit assignment problem wherein we have to determine which action
we took along the way was really responsible for the reward obtained at the end of the trajectory.
In regular Q-learning, this will slow down convergence immensely — we need T updates for a
trajectory of length T to even get away from our initialization Q0. Temporal Different Learning
(TD(λ)) is a more advanced RL approach which helps deal with these situations by propagating
rewards backwards retrospectively to all the previous states in the trajectory in some exponentially
decaying way (according to the parameter λ) so that each update for a trajectory is more efficient.
This approach was most famously used for TD-Gammon, an RL algorithm that was used to create
a backgammon playing AI.

23.8 Policy Gradient

Policy gradient is an alternative way to approach RL problems. In Q-learning, we tried to build
some approximate Q function, Qθ, and then optimize θ to get good Q values. Policy gradient takes
the alternative approach of learning a policy πθ(a|s) that’s a probability distribution of the action
given the state. The goal is

max
θ

Eπθ [R(s0, a0, a1) + γR(s1, a1, s2) + . . .].

To maximize this, we want the gradient of this quantity with respect to θ. Taking this gradient is a
bit tricky since the θ appears in the distribution with respect to which we are taking the expectation.
To handle this, we can use the log-derivative trick, which says

∇θEπθ [R] = Eπθ [R∇θ log πθ],

thereby allowing us to compute a gradient we can use to update the parameters θ.

