

DS 102: Data, Inference, and Decisions

Lecture 5

Michael Jordan
University of California, Berkeley

Two Kinds of Statistical Inference

- Bayesian and Frequentist
- Both inferential frameworks are useful
- It's akin to "waves" vs. "particles" in physics
 - they're both correct in some sense
 - they are complementary in many ways
 - but they also conflict in some serious ways
- Understanding Bayes/frequentist relationships can help you become a real problem solver, not just a person who runs downloads software and runs data analysis procedures

Frequentism

- We want to be able to say that a procedure works "on average"
 - or possibly "with high probability"
- Where does the randomness come from to be able to talk about an "average" or a "probability"?
- The frequentist idea (due to Neyman, Wald, and others) is to assume that we don't just have one dataset, but rather we repeatedly draw datasets independently from the population
 - and the randomness comes from this sampling process
 - for example, that's the meaning of the expectation in going from the FDP to the FDR

Bayesianism

 The idea is to condition on the data and consider the posterior distribution of various unknowns conditional on the data

$$P(\theta \mid \text{data}) \propto P(\text{data} \mid \theta) P(\theta)$$

- This updates the prior belief into a posterior belief
- A Bayesian doesn't talk about averages over multiple possible data sets; they want to condition on the observed data
- A Bayesian is happy to assign probabilities to things that can't be repeated

Frequentist Hypothesis Testing

- This is what one learns in classical statistics classes
- The basic idea is to specify, via a probability distribution, what data one expects to see under the null hypothesis
 - and similarly for the alternative hypothesis
- One then collects actual data and assesses, via some algorithm, how well the data fit that null distribution
- If the answer is "not so much," then one rejects the null
- One then proves that such a decision-making algorithm will perform well on average
 - e.g., having a controlled probability of a Type I error
 - it's that probability which is a frequentist concept

Bayesian Hypothesis Testing

- Has risen, fallen and risen again many times over history
- The basic idea is to specify, via a probability distribution, what data one expects to see under the null hypothesis and similarly for the alternative hypothesis
- One places a prior probability on the null and the alternative
- One now has all the ingredients to compute a conditional probability of the hypothesis given the data

Comparisons

Bayesian perspective

- conditional perspective--inferences should be made conditional on the actual observed data, not on possible data one could have observed
- natural in the setting of a long-term project with a domain expert
- the optimist---let's make the best use possible of our sophisticated inferential tool

Frequentist perspective

- unconditional perspective---inferential procedures should give good answers in repeated use
- natural in the setting of writing software that will be used by many people for many problems
- the pessimist--let's protect ourselves against bad decisions given that our inferential procedure is a simplification of reality

Comparisons

Bayesian perspective

- conditional perspective--inferences should be made conditional on the actual observed data, not on possible data one could have observed
- natural in the setting of a long-term project with a domain expert
- the optimist---let's make the best use possible of our sophisticated inferential tool

Frequentist perspective

- unconditional perspective---inferential procedures should give good answers in repeated use
- natural in the setting of writing software that will be used by many people for many problems
- the pessimist--let's protect ourselves against bad decisions
- Q: Are "bias" and "variance" frequentist or Bayesian?

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator
- Now suppose that someone tells you that the measuring device was broken, and anybody over 7 feet tall was recorded as 7 feet
 - but there actually was no one over 7 feet tall; everyone was actually less than 6.5 feet

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator
- Now suppose that someone tells you that the measuring device was broken, and anybody over 7 feet tall was recorded as 7 feet
 - but there actually was no one over 7 feet tall; everyone was actually less than 6.5 feet
- The right model for the truncated data is a truncated Gaussian, and the sample mean is no longer unbiased under the new model

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator
- Now suppose that someone tells you that the measuring device was broken, and anybody over 7 feet tall was recorded as 7 feet
 - but there actually was no one over 7 feet tall; everyone was actually less than 6.5 feet
- The right model for the truncated data is a truncated Gaussian, and the sample mean is no longer unbiased under the new model
- Should you alter your estimate?
 - consider this question from both a Bayesian and frequentist point of view

• Define a family of probability models for the data X, indexed by a parameter heta

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

Example: 0/1 loss

$$\theta \in \{0, 1\}$$

$$\delta(X) \in \{0, 1\}$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

Example: 0/1 loss

$$\theta \in \{0,1\}$$
 (Reality)

$$\delta(X) \in \{0,1\}$$
 (Decision)

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

Example: 0/1 loss
$$0 \qquad 1$$

$$\theta \in \{0,1\} \quad \text{(Reality)}$$

$$\delta(X) \in \{0,1\} \quad \text{(Decision)}$$

$$0 \qquad 1$$

$$1 \qquad 0$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

Example: L2 loss

$$\theta \in \mathbb{R}$$

$$\delta(X) \in \mathbb{R}$$

$$l(\theta, \delta(X)) = (\delta(X) - \theta)^2$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

• The goal is to use the loss function to compare procedures, but both of its arguments are unknown

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

• The goal is to use the loss function to compare procedures, but both of its arguments are unknown

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

 The goal is to use the loss function to compare procedures, but both of its arguments are unknown

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

• The goal is to use the loss function to compare procedures, but both of its arguments are unknown

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

 The goal is to use the loss function to compare procedures, but both of its arguments are unknown

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

• The goal is to use the loss function to compare procedures, but both of its arguments are unknown

Risk Functions

• The frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta} l(\theta, \delta(X))$$

The Bayesian posterior risk:

$$\rho(X) = \mathbb{E}[l(\theta, \delta(X)) \mid X]$$

Risk Functions

The frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta} l(\theta, \delta(X))$$

The Bayesian posterior risk:

$$\rho(X) = \mathbb{E}[l(\theta, \delta(X)) \mid X]$$

• A fun bonus exercise: If we take an expectation of $R(\theta)$ with respect to θ , or an expectation of $\rho(X)$ with respect to X, we get a constant known as the "Bayes risk"

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

• The loss: $l(\theta,\delta(X))=(\delta(X)-\theta)^2$

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta}[l(\theta, \delta(X))]$$

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta}[l(\theta, \delta(X))]$$
$$= \mathbb{E}_{\theta}[(\delta(X) - \theta)^{2}]$$

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta}[l(\theta, \delta(X))]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X) + \mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta}[l(\theta, \delta(X))]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X) + \mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))^{2}] + 2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)] + \mathbb{E}_{\theta}[(\mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

$$2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)]$$

$$2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)]$$

= $2(\mathbb{E}_{\theta}\delta(X) - \theta)\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))]$

$$2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)]$$

$$= 2(\mathbb{E}_{\theta}\delta(X) - \theta)\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))]$$

$$= 2(\mathbb{E}_{\theta}\delta(X) - \theta)[\mathbb{E}_{\theta}\delta(X) - \mathbb{E}_{\theta}\delta(X)]$$

$$2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)]$$

$$= 2(\mathbb{E}_{\theta}\delta(X) - \theta)\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))]$$

$$= 2(\mathbb{E}_{\theta}\delta(X) - \theta)[\mathbb{E}_{\theta}\delta(X) - \mathbb{E}_{\theta}\delta(X)]$$

$$= 0$$

 Essentially this is just orthogonality, and the risk decomposition on the previous page is the Pythagorean theorem...

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta}[l(\theta, \delta(X))]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X) + \mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))^{2}] + 2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)] + \mathbb{E}_{\theta}[(\mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta}[l(\theta, \delta(X))]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X) + \mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))^{2}] + 2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)] + \mathbb{E}_{\theta}[(\mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))^{2}] + (\mathbb{E}_{\theta}\delta(X) - \theta)^{2}$$

- The loss: $l(\theta, \delta(X)) = (\delta(X) \theta)^2$
- Expanding out the frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta}[l(\theta, \delta(X))]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X) + \mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))^{2}] + 2\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))(\mathbb{E}_{\theta}\delta(X) - \theta)] + \mathbb{E}_{\theta}[(\mathbb{E}_{\theta}\delta(X) - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta(X))^{2}] + (\mathbb{E}_{\theta}\delta(X) - \theta)^{2}$$

$$= \text{variance } + \text{bias}^{2}$$

Consequences of this Decomposition

- Lots of frequentist statistics involves analyzing the bias and the variance of various procedures
- Generally speaking, the bias and the variance trade off
 - i.e., when one adjusts some tuning knob of the procedure to decrease the variance, the bias increases, and vice versa
- The classical statistical approach was again to formulate inference as a constrained optimization problem
 - e.g., consider only estimators that have zero bias and then minimize the variance
 - this approach has become less prominent over the years
 - e.g., Bayesian and empirical Bayesian procedures generally are biased
 - but they have lower variance
- So modern frequentist analysis usually tries to characterize this tradeoff, and it makes use of Bayesian ideas to find good trade offs
 - as you've hopefully understood, FDR is a great example of this!

Privacy and Data Analysis

- Individuals are not generally willing to allow their personal data to be used without control on how it will be used and now much privacy loss they will incur
- "Privacy loss" can be quantified via differential privacy
- We want to trade privacy loss against the value we obtain from data analysis
- The question becomes that of quantifying such value and juxtaposing it with privacy loss
- We'll have an entire section on privacy later in the course, but let's make some initial comments here

Q is a "noisy channel"

Classical problem in differential privacy: show that $\hat{\theta}$ and $\tilde{\theta}$ are close under constraints on Q

S is the sampling process

Classical problem in statistical theory: show that $\tilde{\theta}$ and θ are close under constraints on S

Privacy and Inference

The privacy-meets-inference problem: show that θ and θ are close under constraints on Q and on S