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Two Kinds of Statistical Inference

« Bayesian and Frequentist
 Both inferential frameworks are useful

» It's akin to “waves” vs. “particles” in physics
— they’re both correct in some sense
— they are complementary in many ways
— butthey also conflict in some serious ways
* Understanding Bayes/frequentist relationships can help you
become a real problem solver, not just a person who runs
downloads software and runs data analysis procedures

University of California, Berkeley



Frequentism

« We want to be able to say that a procedure works “on
average’
— or possibly “with high probability”
 Where does the randomness come from to be able to
talk about an “average” or a “probability”?

» The frequentist idea (due to Neyman, Wald, and others)
is to assume that we don’t just have one dataset, but
rather we repeatedly draw datasets independently from
the population

— and the randomness comes from this sampling process

— for example, that's the meaning of the expectation in going from
the FDP to the FDR

University of California, Berkeley



Bayesianism

e The idea is to condition on the data and consider the
posterior distribution of various unknowns conditional
on the data

P(0|data) oc P(data|6)P(6)

* This updates the prior belief into a posterior belief

« A Bayesian doesn’t talk about averages over multiple
possible data sets; they want to condition on the
observed data

« A Bayesian is happy to assign probabilities to things
that can’t be repeated

University of California, Berkeley



Frequentist Hypothesis Testing

 This is what one learns in classical statistics classes

» The basic idea is to specify, via a probability
distribution, what data one expects to see under the
null hypothesis

— and similarly for the alternative hypothesis

* One then collects actual data and assesses, via some

algorithm, how well the data fit that null distribution

» If the answer is “not so much,” then one rejects the null

* One then proves that such a decision-making algorithm
will perform well on average
— e.g., having a controlled probability of a Type | error
— it's that probability which is a frequentist concept

University of California, Berkeley



Bayesian Hypothesis Testing

» Hasrisen, fallen and risen again many times over history

« The basic idea is to specify, via a probability distribution,
what data one expects to see under the null hypothesis
and similarly for the alternative hypothesis

* One places a prior probability on the null and the
alternative

* One now has all the ingredients to compute a conditional
probability of the hypothesis given the data

University of California, Berkeley



Comparisons

« Bayesian perspective
— conditional perspective--inferences should be made conditional on the
actual observed data, not on possible data one could have observed
— naturalin the setting of a long-term project with a domain expert
— the optimist---let’'s make the best use possible of our sophisticated
inferential tool
* Frequentist perspective

— unconditional perspective---inferential procedures should give good
answers in repeated use

— naturalin the setting of writing software that will be used by many
people for many problems

— the pessimist--let’s protect ourselves against bad decisions given that
our inferential procedure is a simplification of reality

University of California, Berkeley



Comparisons

« Bayesian perspective
— conditional perspective--inferences should be made conditional on the
actual observed data, not on possible data one could have observed
— naturalin the setting of a long-term project with a domain expert
— the optimist---let’'s make the best use possible of our sophisticated
inferential tool
* Frequentist perspective

— unconditional perspective---inferential procedures should give good
answers in repeated use

— naturalin the setting of writing software that will be used by many
people for many problems

— the pessimist--let’s protect ourselves against bad decisions
* Q: Are “bias” and “variance” frequentist or Bayesian?
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A Small Thought Experiment

« Suppose that you want to estimate the average height of the populationin a
city

* Youtake a random sample of 100 people, measure their height X; and adopt
the model X; ~ N (u, 1)

* Anunbiased estimator of [t is given by X, the sample mean
— i.e., the sample meanis a good frequentistestimator
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A Small Thought Experiment

« Suppose that you want to estimate the average height of the populationin a
city
* Youtake a random sample of 100 people, measure their height X; and adopt
the model X; ~ N (u, 1) )
* Anunbiased estimator of 4 is given by X, the sample mean
— i.e., the sample meanis a good frequentistestimator

 Now suppose that someone tells you that the measuring device was broken,

and anybody over 7 feet tall was recorded as 7 feet
— butthere actuallywas no one over 7 feet tall; everyone was actually less than 6.5 feet

« The right model for the truncated data is a truncated Gaussian, and the
sample mean is no longer unbiased under the new model

« Should you alter your estimate?
— considerthis question from both a Bayesian and frequentist pointof view

University of California, Berkeley



Decision-Theoretic Framework

« Define a family of probability models for the data X, indexed by a parameter 6
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Decision-Theoretic Framework

« Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
* Define aloss function:

1(0,0(X)) Decision
« Example: 0/1 loss 0 1
0 € {0,1} (Reality) > © | 10,0 | 10,1)
0(X) € {0,1} (Decision) §
&~ | (1,0) | 1(1,1)
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Decision-Theoretic Framework

« Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
* Define aloss function:

[(0,0(X
(6,0(X)) Decision
« Example: 0/1 loss 0 1
6 €{0,1} (Reality) >~ o ¢ 1
0(X) € {0,1} (Decision) §
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Decision-Theoretic Framework

« Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
* Define aloss function:

[(0,6(X))
« Example: L2 loss
0 cR

5(X) € R [(6,0(X)) = (0(X) = 0)
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«  Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
« Define a loss function:

1(6,0(X))

« The goal is to use the loss function to compare procedures, but both of its
arguments are unknown
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Decision-Theoretic Framework

«  Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
« Define aloss function:

1(6,0(X))

« The goal is to use the loss function to compare procedures, but both of its
arguments are unknown

[(0,6(X))
frequentist A Bayesian
expectation expectation
Egl(0,6(X)) E[I(6,5(X))| X]

University of California, Berkeley



Risk Functions

The frequentist risk:

R(0) = Eol(6, (X))
The Bayesian posterior risk:

p(X) = E[1(6,0(X)) | X]
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Risk Functions

« The frequentist risk:

R(0) = Egl(0,6(X))
 The Bayesian posterior risk:
p(X) =E[l(6,0(X)) | X]

-« Afun bonus exercise: If we take an expectation of R(#) with respect to 6,
or an expectation of p(X) with respect to X, we get a constant known as
the “Bayes risk”

University of California, Berkeley



Example: Frequentist Risk Under L2 Loss

The loss: 1(0,6(X)) = (6(X) — 6)?

Expanding out the frequentist risk:
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Example: Frequentist Risk Under L2 Loss

The loss: 1(0,6(X)) = (6(X) — 6)?
Expanding out the frequentist risk:
R(0) = Ey|l

= Eq|(
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Example: Frequentist Risk Under L2 Loss

The loss: 1(0,6(X)) = (6(X) — 6)?

Expanding out the frequentist risk:

R(0) = Eg[l(6,6(X))]
= Eg[(6(X) — 0)?]
= Eg[(6(X) — Epd(X) +Egd(X) — 6)?]
= Eo[(6(X) — Eg6(X))*] 4 2E4[(6(X) — Egd(X))(Egd(X) — 0)] + Eg[(Eed(X) — 0)°]
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The Cross-Product Vanishes

2Eg[(0(X) — Ego(X))(Eqd(X) — 6)]
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The Cross-Product Vanishes
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The Cross-Product Vanishes

2Eg[(0(X) — Egd(X))(Egd(X) — 0)]
X) — 0)Ep[(6(X) —Ego(X))]
X) = 0)[Egd(X) — Epd(X)]
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The Cross-Product Vanishes

2Eg[(0(X) — Egd(X))(Egd(X) — 0)]
— 0)Eg[(6(X) — Epd(X))]
— 0)[Egd(X) — Egd(X)]

Essentially this is just orthogonality, and the risk decomposition on the
previous page is the Pythagorean theorem...
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Example: Frequentist Risk Under L2 Loss

The loss: 1(0,6(X)) = (6(X) — 6)?

Expanding out the frequentist risk:
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Example: Frequentist Risk Under L2 Loss

The loss: 1(0,6(X)) = (6(X) — 6)?

Expanding out the frequentist risk:

|
=

00(X))?] + 2Eg[(6(X) — Eg6(X))(Egd(X) — 0)] + Eg[(Egd(X) — 6)?]
00(X))?] + (Egd(X) — 6)?
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=
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Example: Frequentist Risk Under L2 Loss

The loss: 1(0,6(X)) = (6(X) — 6)?

Expanding out the frequentist risk:

R(0) = Eg[l(0,0(X))]
= Ep[(0(X) — 0)°]
= Ep[(0(X) — Eg0(X) + Egd(X) — 0)°]
= Eg[(6(X) — Eg0(X))?] 4+ 2Eg[(6(X) — Eg6(X))(Egd(X) — 0)] + Eg[(Egd(X) — 6)7]
= Eg[(6(X) — Egd(X))?] + (Eg6(X) — 0)*

2
variance - bias

University of California, Berkeley



Consequences of this Decomposition

« Lots of frequentist statistics involves analyzing the bias and the variance of
various procedures

« Generally speaking, the bias and the variance trade off

— i.e., whenone adjusts some tuning knob of the procedure to decrease the variance, the bias
increases, and vice versa

« The classical statistical approach was again to formulate inference as a
constrained optimization problem
— e.g., consideronly estimators that have zero bias and then minimize the variance
— this approach has become less prominentoverthe years
— e.g., Bayesianand empirical Bayesian procedures generally are biased
— butthey have lowervariance

* So modern frequentist analysis usually tries to characterize this tradeoff,
and it makes use of Bayesian ideas to find good trade offs
— asyou’'ve hopefullyunderstood, FDR is a greatexample of this!

University of California, Berkeley



Privacy and Data Analysis

Individuals are not generally willing to allow their
personal data to be used without control on how it will

be used and now much privacy loss they will incur
* “Privacy loss” can be quantified via

 We want to trade privacy loss against the value we
obtain from data analysis

« The question becomes that of quantifying such value
and juxtaposing it with privacy loss

« WEe'll have an entire section on privacy later in the
course, but let's make some initial comments here
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Privacy and Inference
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