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Naive Multiple Decision-Making

A

P-value

Hypothesis Index

« We see that the decision-maker is avoiding false negatives, but is making a
lot of false positives, and its false discovery proportion is 4/11; pretty bad!



Bonferroni

P-value

Hypothesis Index

« Bonferroni avoids those false positives, but is making a lot of false
negatives, and its false discovery proportion is 1/2; even worse!



Is There Something Else We Can Do?

« It's not clear that any fixed threshold will work, and it’s not
how to set such a threshold without knowing the truth

 We have to think out of the box: we’ll be developing a
procedure that works with sorted p-values, and compares
them to a line with a positive slope, not a horizontal line!

A

P-value

Hypothesis Index
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A Bayesian Derivation

HH:mD:D:Pw:HHzmﬂHzm

P(D=1)
_ P(false positive)mg
P(D=1)

* We can (quite reasonably) upper bound 7o with 1, and
upper bound P(false positive) using Neyman-Pearson
thinking

* And so the numerator can be controlled; what about the
denominator?

— in the multiple hypothesis testing problem it's easy to estimate P(D — 1)
directly from the data!
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain P-values FP; , and sort them from smallest to
largest, denoting the sorted P-values as P
— the small ones are the safest to reject

« Now, find the largest k such that:

k
Py < —a
m
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Given m tests, obtain P-values P; , and sort them from smallest to
largest, denoting the sorted P-values as P
— the small ones are the safest to reject

« Now, find the largest k such that:
Py < 2
(k) <

P—valug

* Reject the null hypothesis (i.e., declare discoveries) for  Hypothesis Index
all hypotheses H; such that i <k

 This controls the FDR!
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Heuristic Argument

a ”¢
k m
« Letting ™ denote the number of true nulls, we have (very roughly):
ak
m —1mMy am
FDR < 20 — m 00 _ 210 )
k k m
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Recall that P-Values are Uniform Under the Null

0 1

« If there are mg such P-values, then there are approximatelyymg
P-values in the interval(0, ), for anyy

University of California, Berkeley



The Online Problem

« Classical statistics, and also the Benjamini & Hochberg

framework, focused on a batch setting in which all data has
already been collected

« E.g., for Benjamini & Hochberg, you need all of the p-values
before you can get started

* |sis possible to consider methods that make sequences of
decisions, and provide FDR control at any moment in time

 |s it conceivable that one can achieve FDR control?

University of California, Berkeley



A More General Approach: Time-Varying Alpha
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More Challenges

 We want to keep going for an arbitrary amount of time, so we
need Y%, oy = 1,and 3.,_, oy < 1for any fixed T
« An example: oy = 27¢

« But now we have less and less power to make discoveries
over time, and eventually we may as well quit

* |s there any way out of this dilemma®?

University of California, Berkeley



A Glimmer of Hope

« Recall that the FDP is a of two counts
 We can make a ratio small in one of two ways:
— make the small
— make the big

 The numerator has the false-positive rate in it, and so in
terms of controlling the numerator we're back to the same
problem of controlling sums of «; values

- The can be made large by making lots of
discoveries

« Perhaps we can earn a bit of alpha whenever we make a
discovery, to be invested and used for false discoveries later

University of California, Berkeley



The Tower Property of Conditional Expectation
« Areally important theorem from probability theory:
ElX] =E[EX|Y]
“the average of an average is an average”

« Note that E[X ] Y] is a random variable

— roughly, it averages over.X in any region in the sample space whereY is a
constant, yielding something like a “step function” over the sample space

— and the outer expectation averages over those averages, weighting them
appropriately



Online FDR Control : High-Level Picture
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Online FDR Control : High-Level Picture

Error budget
/ for first test

Error budget for

/‘ second test
‘ é‘ Tests use wealth

Remaining error budget\

or “alpha-wealth” »
Infinite process

Discoveries
earn wealth
‘ Error budget

is data-dependent




Online FDR Algorithms

« The first online FDR algorithm was known as “alpha
investing” and is due to Foster and Stine (2008)

« A more recent (and simpler) online FDR algorithm is due
to Javanmard and Montanari, and is called “LORD”

* The basic idea is to renew the alpha wealth every time a
discovery (i.e., rejection) is made, and decay that wealth
forward in time

* The current wealth is the sum of all of the decayed values
of the past wealth increments



Algorithm 1 The LORD Procedure

input: FDR level a, non-increasing sequence {7:}72; such that > o, v = 1,
initial wealth Wy < «
Set ] =7 W()

fort=1,2,... do
p-value P; arrives

if P, < a4, reject P,

api1 = Y1 Wo + Ve 1—m (@ = Wo)H{m <t} +ad 77 yep1-r, {7y <t}

where 7; is time of j-th rejection 7; = min{k : Zle HP <o} =3}
end




A Stripped-Down Version of LORD

* Only consider the most recent rejection
« This renews the wealth, which further decays
 Why does such an approach provide control over the FDR?




A Stripped-Down Version of LORD

* Only consider the most recent rejection
« This renews the wealth, which further decays
 Why does such an approach provide control over the FDR?

* Return to the Bayesian perspective, and consider the
following estimate (an upper bound) of the FDP:

t
FDD(t) := —, 2=y Y
Dim1 WP < aif

« The denominator is just the number of rejections until time ¢,
and the numerator is an upper bound on the probability of
one or more false-positive errors
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Analysis

« Break up the sum Zle a; into “episodes” between the
rejections

* In each episode, the sum is upper bounded by « Zfﬁ;l Vitl—7
by the definition of (simplified) LORD, where ¢’ is the episode
length and 7 is the time of the most recent rejection

« This sum is less than « by the definition of the {~: } sequence
« The number of episodes is: Zﬁzl HP <a;}
* And so we conclude:

FDP(t) :=




And Now We Connect to the FDR

We can write the FDR in the following nice form:
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And Now We Connect to the FDR

* We can write the FDR in the following nice form:

zigt,inull HP; < a;f
Zigt WP <o}

« To simplify our derivation, we will make an approximation (the “modified
FDR”):

FDR =E

]E[Zigt,i nant 1P < i}

FDR ~
E[2 i 1P < ai}]




And We Obtain an Actual Proof

We make the mFDR approximation:

FDR ~ E[Zigt,i null 1{P¢ < Oéz'}]

E[) i<t UPi < )]




And We Obtain an Actual Proof

 We make the mFDR approximation:

E[Zigt,z‘ nun P < o }]

FDR, ~
E[> i<t P < )]

and then compute:

= > EEMP <o}lell= Y E[P{P < oilai}]

1<t,7 null 1<t,i null 1<t,i null
= Y Ela] <E[Y o] <oE[Y 1P <ai]
1<t,7 null 1<t 1<t
where the last line uses: .
FDP(t) := iz % <a




And We Obtain an Actual Proof

 We make the mFDR approximation:

E[Zigt,z‘ nun P < o }]

FDR, ~
E[> i<t P < )]

and then compute:

1<t,7 null 1<t,7 null 1<t,7 null
= Y Elu] <ED o] <aE)) P <oy}l
1<t,7 null 1<t 1<t
where the last line uses: .
FDP(f) = —2i=1% <,
« This establishes: > i1 P < i}
FDR < «



Two Kinds of Statistical Inference

« Bayesian and Frequentist
 Both inferential frameworks are useful

» It's akin to “waves” vs. “particles” in physics
— they’re both correct in some sense
— they are complementary in many ways
— butthey also conflict in some serious ways
* Understanding Bayes/frequentist relationships can help you
become a real problem solver, not just a person who runs
downloads software and runs data analysis procedures

University of California, Berkeley



Frequentism

« We want to be able to say that a procedure works “on
average’
— or possibly “with high probability”
 Where does the randomness come from to be able to
talk about an “average” or a “probability”?

» The frequentist idea (due to Neyman, Wald, and others)
is to assume that we don’t just have one dataset, but
rather we repeatedly draw datasets independently from
the population

— and the randomness comes from this sampling process

— for example, that's the meaning of the expectation in going from
the FDP to the FDR

University of California, Berkeley



Bayesianism

e The idea is to condition on the data and consider the
posterior distribution of various unknowns conditional
on the data

P(0|data) oc P(data|6)P(6)

* This updates the prior belief into a posterior belief

« A Bayesian doesn’t talk about averages over multiple
possible data sets; they want to condition on the
observed data

« A Bayesian is happy to assign probabilities to things
that can’t be repeated

University of California, Berkeley



Frequentist Hypothesis Testing

 This is what one learns in classical statistics classes

» The basic idea is to specify, via a probability
distribution, what data one expects to see under the
null hypothesis

— and similarly for the alternative hypothesis

* One then collects actual data and assesses, via some

algorithm, how well the data fit that null distribution

» If the answer is “not so much,” then one rejects the null

* One then proves that such a decision-making algorithm
will perform well on average
— e.g., having a controlled probability of a Type | error

University of California, Berkeley



Bayesian Hypothesis Testing

» Hasrisen, fallen and risen again many times over history

« The basic idea is to specify, via a probability distribution,
what data one expects to see under the null hypothesis
and similarly for the alternative hypothesis

* One places a prior probability on the null and the
alternative

* One now has all the ingredients to compute a conditional
probability of the hypothesis given the data

University of California, Berkeley



Comparisons

« Bayesian perspective
— conditional perspective--inferences should be made conditional on the
actual observed data, not on possible data one could have observed
— naturalin the setting of a long-term project with a domain expert
— the optimist---let’'s make the best use possible of our sophisticated
inferential tool
* Frequentist perspective

— unconditional perspective---inferential procedures should give good
answers in repeated use

— naturalin the setting of writing software that will be used by many
people for many problems

— the pessimist--let’s protect ourselves against bad decisions given that
our inferential procedure is a simplification of reality

University of California, Berkeley



Comparisons

« Bayesian perspective
— conditional perspective--inferences should be made conditional on the
actual observed data, not on possible data one could have observed
— naturalin the setting of a long-term project with a domain expert
— the optimist---let’'s make the best use possible of our sophisticated
inferential tool
* Frequentist perspective

— unconditional perspective---inferential procedures should give good
answers in repeated use

— naturalin the setting of writing software that will be used by many
people for many problems

— the pessimist--let’s protect ourselves against bad decisions
* Q: Are “bias” and “variance” frequentist or Bayesian?

University of California, Berkeley
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« Define a family of probability models for the data X, indexed by a parameter 6
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Decision-Theoretic Framework

« Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
* Define aloss function:

1(0,0(X)) Decision
« Example: 0/1 loss 0 1
0 € {0,1} (Reality) > © | 10,0 | 10,1)
0(X) € {0,1} (Decision) §
&~ | (1,0) | 1(1,1)
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Decision-Theoretic Framework

« Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
* Define aloss function:

[(0,0(X
(6,0(X)) Decision
« Example: 0/1 loss 0 1
6 €{0,1} (Reality) >~ o ¢ 1
0(X) € {0,1} (Decision) §
Y — 1 0
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Decision-Theoretic Framework

« Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
* Define aloss function:

[(0,6(X))
« Example: L2 loss
0 cR

5(X) € R [(6,0(X)) = (0(X) = 0)

University of California, Berkeley



Decision-Theoretic Framework

«  Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
« Define a loss function:

1(0,6(X))
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Decision-Theoretic Framework

«  Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
« Define a loss function:

1(6,0(X))

« The goal is to use the loss function to compare procedures, but both of its
arguments are unknown

[(6,6(X))
frequentist /\ Bayesian
expectation expectation
Eol(0,6(X)) E[1(8,6(X)) | X]
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« Define aloss function:
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Decision-Theoretic Framework

«  Define a family of probability models for the data X, indexed by a parameter 6
 Define a procedure §(X) that operates on the data to make a decision
« Define aloss function:

1(6,0(X))

« The goal is to use the loss function to compare procedures, but both of its
arguments are unknown

[(0,6(X))
frequentist A Bayesian
expectation expectation
Egl(0,6(X)) E[I(6,5(X))| X]

University of California, Berkeley



Risk Functions

The frequentist risk:

R(0) = Eol(6, (X))
The Bayesian posterior risk:

p(X) = E[1(6,0(X)) | X]

University of California, Berkeley



Risk Functions

« The frequentist risk:

R(0) = Egl(0,6(X))
 The Bayesian posterior risk:
p(X) =E[l(6,0(X)) | X]

-« Afun bonus exercise: If we take an expectation of R(#) with respect to 6,
or an expectation of p(X) with respect to X, we get a constant known as
the “Bayes risk”

University of California, Berkeley



A Small Thought Experiment

« Suppose that you want to estimate the average height of the populationin a
city

* Youtake a random sample of 100 people, measure their height X; and adopt
the model X; ~ N (u, 1)

* Anunbiased estimator of [t is given by X, the sample mean
— i.e., the sample meanis a good frequentistestimator
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A Small Thought Experiment

« Suppose that you want to estimate the average height of the populationin a
city
* Youtake a random sample of 100 people, measure their height X; and adopt
the model X; ~ N (u, 1) )
* Anunbiased estimator of 4 is given by X, the sample mean
— i.e., the sample meanis a good frequentistestimator

 Now suppose that someone tells you that the measuring device was broken,

and anybody over 7 feet tall was recorded as 7 feet
— butthere actuallywas no one over 7 feet tall; everyone was actually less than 6.5 feet

« The right model for the truncated data is a truncated Gaussian, and the
sample mean is no longer unbiased under the new model

« Should you alter your estimate?
— considerthis question from both a Bayesian and frequentist pointof view

University of California, Berkeley



