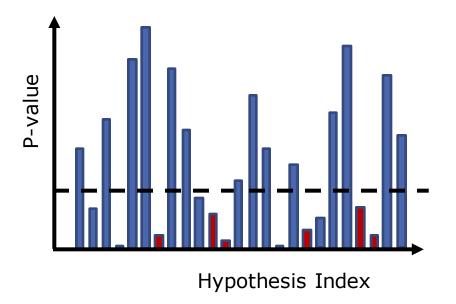


DS 102: Data, Inference, and Decisions

Lecture 4

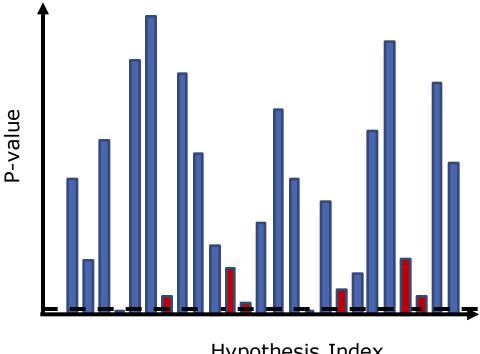
Michael Jordan
University of California, Berkeley

Naïve Multiple Decision-Making



 We see that the decision-maker is avoiding false negatives, but is making a lot of false positives, and its false discovery proportion is 4/11; pretty bad!

Bonferroni

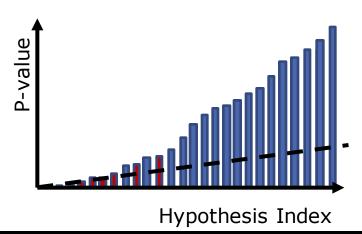


Hypothesis Index

Bonferroni avoids those false positives, but is making a lot of false negatives, and its false discovery proportion is 1/2; even worse!

Is There Something Else We Can Do?

- It's not clear that any fixed threshold will work, and it's not how to set such a threshold without knowing the truth
- We have to think out of the box: we'll be developing a
 procedure that works with sorted p-values, and compares
 them to a line with a positive slope, not a horizontal line!



A Bayesian Derivation

$$P(H = 0 | D = 1) = \frac{P(D = 1 | H = 0)P(H = 0)}{P(D = 1)}$$
$$= \frac{P(\text{false positive})\pi_0}{P(D = 1)}$$

- We can (quite reasonably) upper bound π_0 with 1, and upper bound $P({\rm false\ positive})$ using Neyman-Pearson thinking
- And so the numerator can be controlled; what about the denominator?
 - in the multiple hypothesis testing problem it's easy to estimate P(D=1) directly from the data!

Controlling the FDR

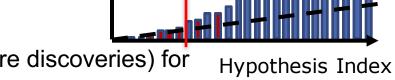
- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted P-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

Controlling the FDR

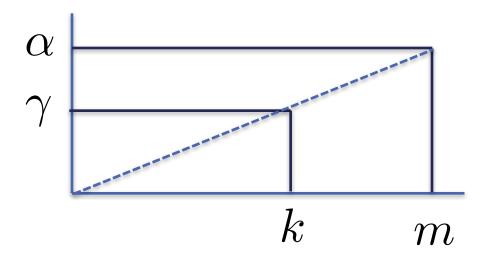
- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted P-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$



- Reject the null hypothesis (i.e., declare discoveries) for all hypotheses H_i such that $i \leq k$
- This controls the FDR!

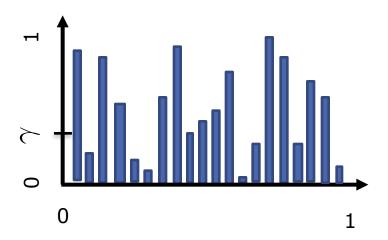
Heuristic Argument



• Letting m_0 denote the number of true nulls, we have (very roughly):

$$FDR \le \frac{\gamma m_0}{k} = \frac{\frac{\alpha k}{m} m_0}{k} = \frac{\alpha m_0}{m} \le \alpha$$

Recall that P-Values are Uniform Under the Null

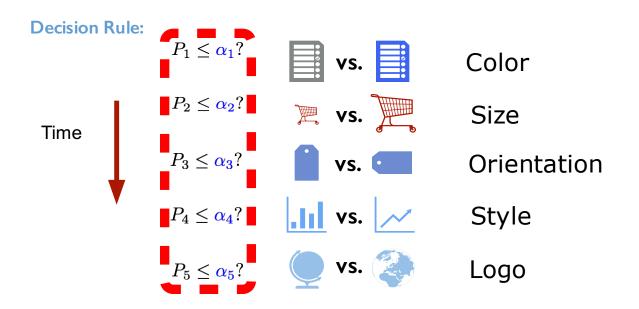


• If there are m_0 such P-values, then there are approximately γm_0 P-values in the interval $(0,\gamma)$, for any γ

The Online Problem

- Classical statistics, and also the Benjamini & Hochberg framework, focused on a batch setting in which all data has already been collected
- E.g., for Benjamini & Hochberg, you need all of the p-values before you can get started
- Is is possible to consider methods that make sequences of decisions, and provide FDR control at any moment in time
- Is it conceivable that one can achieve lifetime FDR control?

A More General Approach: Time-Varying Alpha



More Challenges

- We want to keep going for an arbitrary amount of time, so we need $\sum_{t=1}^{\infty} \alpha_t = 1$, and $\sum_{t=1}^{T} \alpha_t < 1$ for any fixed T
- An example: $\alpha_t = 2^{-t}$
- But now we have less and less power to make discoveries over time, and eventually we may as well quit
- Is there any way out of this dilemma?

A Glimmer of Hope

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big
- The numerator has the false-positive rate in it, and so in terms of controlling the numerator we're back to the same problem of controlling sums of α_i values
- The denominator can be made large by making lots of discoveries
- Perhaps we can earn a bit of alpha whenever we make a discovery, to be invested and used for false discoveries later

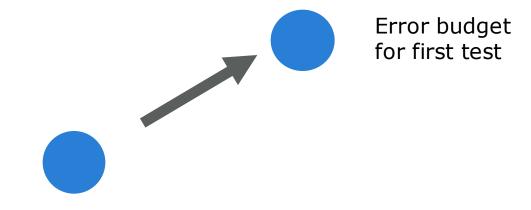
The Tower Property of Conditional Expectation

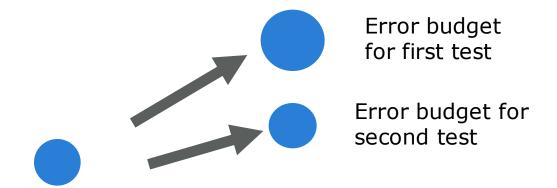
A really important theorem from probability theory:

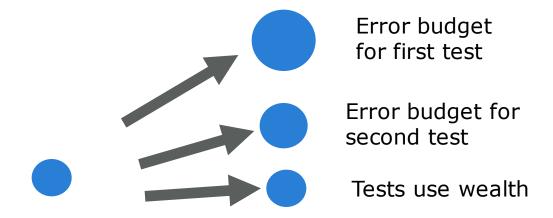
$$\mathbb{E}[X] = \mathbb{E}\left[\mathbb{E}[X \mid Y]\right]$$

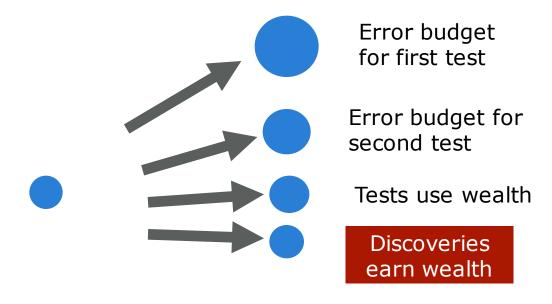
"the average of an average is an average"

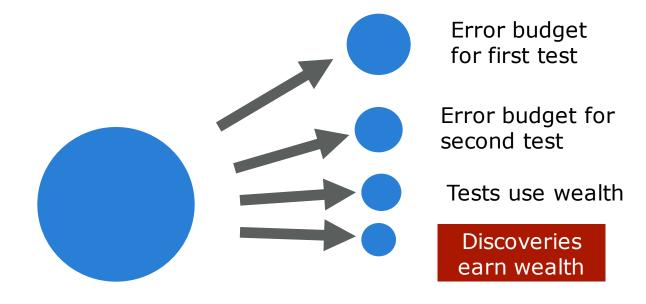
- Note that $\mathbb{E}[X\,|\,Y]$ is a random variable
 - roughly, it averages over X in any region in the sample space where Y is a constant, yielding something like a "step function" over the sample space
 - and the outer expectation averages over those averages, weighting them appropriately

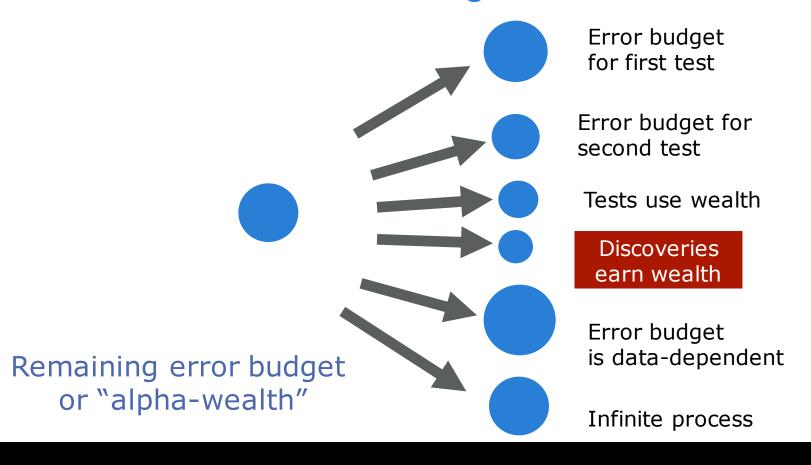












Online FDR Algorithms

- The first online FDR algorithm was known as "alpha investing" and is due to Foster and Stine (2008)
- A more recent (and simpler) online FDR algorithm is due to Javanmard and Montanari, and is called "LORD"
- The basic idea is to renew the alpha wealth every time a discovery (i.e., rejection) is made, and decay that wealth forward in time
- The current wealth is the sum of all of the decayed values of the past wealth increments

Algorithm 1 The LORD Procedure

input: FDR level α , non-increasing sequence $\{\gamma_t\}_{t=1}^{\infty}$ such that $\sum_{t=1}^{\infty} \gamma_t = 1$, initial wealth $W_0 \leq \alpha$

Set $\alpha_1 = \gamma_1 W_0$

for t = 1, 2, ... do

p-value P_t arrives

if $P_t \leq \alpha_t$, reject P_t

$$\alpha_{t+1} = \gamma_{t+1} W_0 + \gamma_{t+1-\tau_1} (\alpha - W_0) \mathbf{1} \{ \tau_1 < t \} + \alpha \sum_{j=1}^{\infty} \gamma_{t+1-\tau_j} \mathbf{1} \{ \tau_j < t \},$$

where τ_j is time of j-th rejection $\tau_j = \min\{k : \sum_{l=1}^k \mathbf{1}\{P_l \le \alpha_l\} = j\}$

 \mathbf{end}

A Stripped-Down Version of LORD

- Only consider the most recent rejection
- This renews the wealth, which further decays
- Why does such an approach provide control over the FDR?

A Stripped-Down Version of LORD

- Only consider the most recent rejection
- This renews the wealth, which further decays
- Why does such an approach provide control over the FDR?
- Return to the Bayesian perspective, and consider the following estimate (an upper bound) of the FDP:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}}$$

• The denominator is just the number of rejections until time t, and the numerator is an upper bound on the probability of one or more false-positive errors

• Break up the sum $\sum_{i=1}^t \alpha_i$ into "episodes" between the rejections

- Break up the sum $\sum_{i=1}^t \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection

- Break up the sum $\sum_{i=1}^t \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection
- This sum is less than α by the definition of the $\{\gamma_i\}$ sequence

- Break up the sum $\sum_{i=1}^{t} \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection
- This sum is less than α by the definition of the $\{\gamma_i\}$ sequence
- The number of episodes is: $\sum_{i=1}^{t} 1\{P_i \leq \alpha_i\}$

- Break up the sum $\sum_{i=1}^{t} \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection
- This sum is less than α by the definition of the $\{\gamma_i\}$ sequence
- The number of episodes is: $\sum_{i=1}^{t} 1\{P_i \leq \alpha_i\}$
- And so we conclude:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

And Now We Connect to the FDR

• We can write the FDR in the following nice form:

$$FDR = \mathbb{E}\left[\frac{\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}}{\sum_{i \leq t} 1\{P_i \leq \alpha_i\}}\right]$$

And Now We Connect to the FDR

We can write the FDR in the following nice form:

$$FDR = \mathbb{E}\left[\frac{\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}}{\sum_{i \leq t} 1\{P_i \leq \alpha_i\}}\right]$$

 To simplify our derivation, we will make an approximation (the "modified FDR"):

FDR
$$\approx \frac{\mathbb{E}\left[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}\right]}{\mathbb{E}\left[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}\right]}$$

And We Obtain an Actual Proof

We make the mFDR approximation:

FDR
$$\approx \frac{\mathbb{E}\left[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}\right]}{\mathbb{E}\left[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}\right]}$$

And We Obtain an Actual Proof

We make the mFDR approximation:

FDR
$$\approx \frac{\mathbb{E}[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}]}{\mathbb{E}[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}]}$$

and then compute:

$$\mathbb{E}\left[\sum_{i \leq t, i \text{ null}} \mathbf{1}\{P_i \leq \alpha_i\}\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{E}[\mathbf{1}\{P_i \leq \alpha_i\} | \alpha_i]] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{P}\{P_i \leq \alpha_i | \alpha_i\}]$$

$$= \sum_{i \leq t, i \text{ null}} \mathbb{E}[\alpha_i] \leq \mathbb{E}[\sum_{i \leq t} \alpha_i] \leq \alpha \mathbb{E}[\sum_{i \leq t} \mathbf{1}\{P_i \leq \alpha_i\}]$$

where the last line uses:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

And We Obtain an Actual Proof

We make the mFDR approximation:

FDR
$$\approx \frac{\mathbb{E}[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}]}{\mathbb{E}[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}]}$$

and then compute:

$$\mathbb{E}\left[\sum_{i \leq t, i \text{ null}} 1\{P_i \leq \alpha_i\}\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{E}[1\{P_i \leq \alpha_i\} | \alpha_i]] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{P}\{P_i \leq \alpha_i | \alpha_i\}]$$

$$= \sum_{i \leq t, i \text{ null}} \mathbb{E}[\alpha_i] \leq \mathbb{E}[\sum_{i \leq t} \alpha_i] \leq \alpha \mathbb{E}[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}]$$

where the last line uses:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

This establishes:

$$FDR < \alpha$$

Two Kinds of Statistical Inference

- Bayesian and Frequentist
- Both inferential frameworks are useful
- It's akin to "waves" vs. "particles" in physics
 - they're both correct in some sense
 - they are complementary in many ways
 - but they also conflict in some serious ways
- Understanding Bayes/frequentist relationships can help you become a real problem solver, not just a person who runs downloads software and runs data analysis procedures

Frequentism

- We want to be able to say that a procedure works "on average"
 - or possibly "with high probability"
- Where does the randomness come from to be able to talk about an "average" or a "probability"?
- The frequentist idea (due to Neyman, Wald, and others) is to assume that we don't just have one dataset, but rather we repeatedly draw datasets independently from the population
 - and the randomness comes from this sampling process
 - for example, that's the meaning of the expectation in going from the FDP to the FDR

Bayesianism

 The idea is to condition on the data and consider the posterior distribution of various unknowns conditional on the data

$$P(\theta \mid \text{data}) \propto P(\text{data} \mid \theta) P(\theta)$$

- This updates the prior belief into a posterior belief
- A Bayesian doesn't talk about averages over multiple possible data sets; they want to condition on the observed data
- A Bayesian is happy to assign probabilities to things that can't be repeated

Frequentist Hypothesis Testing

- This is what one learns in classical statistics classes
- The basic idea is to specify, via a probability distribution, what data one expects to see under the null hypothesis
 - and similarly for the alternative hypothesis
- One then collects actual data and assesses, via some algorithm, how well the data fit that null distribution
- If the answer is "not so much," then one rejects the null
- One then proves that such a decision-making algorithm will perform well on average
 - e.g., having a controlled probability of a Type I error

Bayesian Hypothesis Testing

- Has risen, fallen and risen again many times over history
- The basic idea is to specify, via a probability distribution, what data one expects to see under the null hypothesis and similarly for the alternative hypothesis
- One places a prior probability on the null and the alternative
- One now has all the ingredients to compute a conditional probability of the hypothesis given the data

Comparisons

Bayesian perspective

- conditional perspective--inferences should be made conditional on the actual observed data, not on possible data one could have observed
- natural in the setting of a long-term project with a domain expert
- the optimist---let's make the best use possible of our sophisticated inferential tool

Frequentist perspective

- unconditional perspective---inferential procedures should give good answers in repeated use
- natural in the setting of writing software that will be used by many people for many problems
- the pessimist--let's protect ourselves against bad decisions given that our inferential procedure is a simplification of reality

Comparisons

Bayesian perspective

- conditional perspective--inferences should be made conditional on the actual observed data, not on possible data one could have observed
- natural in the setting of a long-term project with a domain expert
- the optimist---let's make the best use possible of our sophisticated inferential tool

Frequentist perspective

- unconditional perspective---inferential procedures should give good answers in repeated use
- natural in the setting of writing software that will be used by many people for many problems
- the pessimist--let's protect ourselves against bad decisions
- Q: Are "bias" and "variance" frequentist or Bayesian?

• Define a family of probability models for the data X, indexed by a parameter heta

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

Example: 0/1 loss

$$\theta \in \{0, 1\}$$

$$\delta(X) \in \{0, 1\}$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

Example: 0/1 loss

$$\theta \in \{0,1\}$$
 (Reality)

$$\delta(X) \in \{0,1\}$$
 (Decision)

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta,\delta(X))$$
 Decision
$$0 \qquad 1$$

$$\theta \in \{0,1\} \quad \text{(Reality)}$$

$$\delta(X) \in \{0,1\} \quad \text{(Decision)}$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

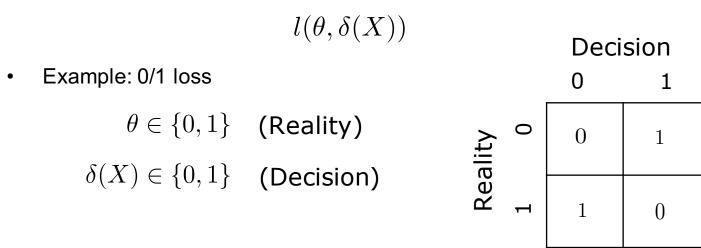
$$l(\theta,\delta(X))$$
 Decision
$$0 \qquad 1$$

$$\theta \in \{0,1\} \quad \text{(Reality)}$$

$$\delta(X) \in \{0,1\} \quad \text{(Decision)}$$

$$\frac{l(0,0)}{l(0,1)}$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:



- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

Example: L2 loss

$$\theta \in \mathbb{R}$$

$$\delta(X) \in \mathbb{R}$$

$$l(\theta, \delta(X)) = (\delta(X) - \theta)^2$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

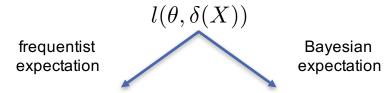
$$l(\theta, \delta(X))$$

• The goal is to use the loss function to compare procedures, but both of its arguments are unknown

- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

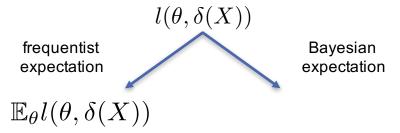
 The goal is to use the loss function to compare procedures, but both of its arguments are unknown



- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

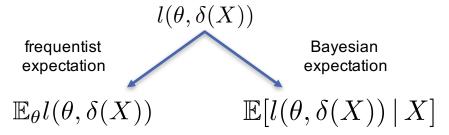
• The goal is to use the loss function to compare procedures, but both of its arguments are unknown



- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

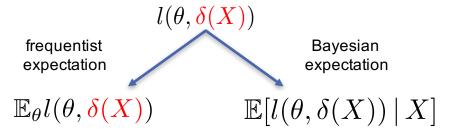
• The goal is to use the loss function to compare procedures, but both of its arguments are unknown



- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

 The goal is to use the loss function to compare procedures, but both of its arguments are unknown



- Define a family of probability models for the data X, indexed by a parameter heta
- Define a procedure $\delta(X)$ that operates on the data to make a decision
- Define a loss function:

$$l(\theta, \delta(X))$$

• The goal is to use the loss function to compare procedures, but both of its arguments are unknown



Risk Functions

The frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta} l(\theta, \delta(X))$$

The Bayesian posterior risk:

$$\rho(X) = \mathbb{E}[l(\theta, \delta(X)) \mid X]$$

Risk Functions

The frequentist risk:

$$R(\theta) = \mathbb{E}_{\theta} l(\theta, \delta(X))$$

The Bayesian posterior risk:

$$\rho(X) = \mathbb{E}[l(\theta, \delta(X)) \mid X]$$

• A fun bonus exercise: If we take an expectation of $R(\theta)$ with respect to θ , or an expectation of $\rho(X)$ with respect to X, we get a constant known as the "Bayes risk"

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator
- Now suppose that someone tells you that the measuring device was broken, and anybody over 7 feet tall was recorded as 7 feet
 - but there actually was no one over 7 feet tall; everyone was actually less than 6.5 feet

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator
- Now suppose that someone tells you that the measuring device was broken, and anybody over 7 feet tall was recorded as 7 feet
 - but there actually was no one over 7 feet tall; everyone was actually less than 6.5 feet
- The right model for the truncated data is a truncated Gaussian, and the sample mean is no longer unbiased under the new model

- Suppose that you want to estimate the average height of the population in a city
- You take a random sample of 100 people, measure their height X_i and adopt the model $X_i \sim N(\mu,1)$
- An unbiased estimator of μ is given by X, the sample mean
 - i.e., the sample mean is a good frequentist estimator
- Now suppose that someone tells you that the measuring device was broken, and anybody over 7 feet tall was recorded as 7 feet
 - but there actually was no one over 7 feet tall; everyone was actually less than 6.5 feet
- The right model for the truncated data is a truncated Gaussian, and the sample mean is no longer unbiased under the new model
- Should you alter your estimate?
 - consider this question from both a Bayesian and frequentist point of view