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The Basic Two-by-Two Table
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Some Row-Wise Rates
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Some Row-Wise Rates
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The Bayesian Posterior

« The posterior probability of the hypothesis given the data:

P(Decision | Reality) P(Reality)
P(Decision)

P(Reality | Decision) =

where P(Reality) is the prior (the “prevalence”)
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Let’s Return to our Column-Wise Rates
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The Goal: Control Errors A Priori

« We've introduced concepts such as false-positive

rates and false-discovery rates as of
performance

 We now want to use them as ways to
algorithms

 We want to give that a certain

algorithm will have good performance
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The Neyman-Pearson Paradigm

« The row-focused Neyman-Pearson paradigm turns the problem into a
constrained optimization problem
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The Neyman-Pearson Paradigm

« The row-focused Neyman-Pearson paradigm turns the problem into a
constrained optimization problem
- The idea is to control the ,P(D=1|H =0),
to be less than some target value, say 0.05
— i.e., make the specificity be greater than 0.95

* And to maximize the subject to that constraint
— i.e., maximize the sensitivity subject to the constraint on the specificity

University of California, Berkeley



The Neyman-Pearson Paradigm

« The row-focused Neyman-Pearson paradigm turns the problem into a
constrained optimization problem

- The idea is to control the ,P(D=1|H =0),
to be less than some target value, say 0.05
* And to maximize the (the sensitivity) subject

to that constraint
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P-Values

« Consider a simple null hypothesis [P

« Consider a statistic, T'( X ), which has a continuous distribution
under the null, and let F'(¢) denote its tail cdf:

F(t) =P(T > t)

- Define the P-value as P = F'(T))
« The P-value has a uniform distribution under the nuill:

P(P <p) =P(F(T) <p)=P(T > F (p) = F(F ' (p)) =p
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A Generic Decision Rule

* Reject H; if the random variable 7} is equal to 1:

* 1 0, otherwise

» This yields Neyman-Pearson control in the case of a single
simple hypothesis (where all the H; are the same and all the ¢;
are set equal to some fixed value, say 0.05)
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Multiple Hypothesis Testing

» Let’s now consider multiple tests, in particular repeated
tests of the same hypothesis

» The row-focused Neyman-Pearson paradigm provides
a priori control over errors made in those cases in
which the null hypothesis is true

— this isn’t very natural when the hypotheses are “cases” which arise
randomly according to their prevalence

— it also makes little sense when we’re testing a bag of different
hypothesis (cf., A/B testing)

» Our example with 10,000 A/B tests showed that
Neyman-Pearson tests do not control column-wise
quantities such as the FDP ®
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Example

P-value

Hypothesis Index

» Suppose that we obtain p-values from 25 experiments



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

« Suppose that we simply reject each test independently if its p-value is
smaller than some threshold



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

« Suppose that we simply reject each test independently if its p-value is
smaller than some thresholding



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

* An oracle knows the truth: that the blue-shaded bars correspond to nulls
(Reality = 0) and the red-shaded bars to alternatives (Reality = 1)



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

« We see that the decision-maker is avoiding false negatives, but is making a
lot of false positives, and its false discovery proportion is 4/11; pretty bad!



Bonferroni

P-value

Hypothesis Index

« Bonferroni avoids those false positives, but is making a lot of false
negatives, and its false discovery proportion is 1/2; even worse!



Is There Something Else We Can Do?

« It's not clear that any fixed threshold will work, and it’s not
how to set such a threshold without knowing the truth

 We have to think out of the box: we’ll be developing a
procedure that works with sorted p-values, and compares
them to a line with a positive slope, not a horizontal line!

A

P-value

Hypothesis Index
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Recall Our Bayesian Calculation

P(D=1|H=0)P(H =0)
P(D=1)
P(false positive)mg
P(D=1)

PH=0|D=1)=
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Recall Our Bayesian Calculation

P —0|D 1)~ PP =11H=0P(H =0

P(D=1)
_ P(false positive)mg
P(D=1)

« We can (quite reasonably) upper bound g with 1, and upper
bound P(false positive) using Neyman-Pearson thinking

« And so the numerator can be controlled; what about the
denominator?
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A Bayesian Calculation

« Using the law of total probability, we have:

P(D=1)=PD=1|H=0PH=0)+PD=1|H=1)P(H=1)
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A Bayesian Calculation

« Using the law of total probability, we have:

PD=1)=PD=1H=0PH=0)+PD=1|H=1)PH=1)
—moP(D=1|H=0)+(1-m)P(D=1|H =1)

so we see that P(D = 1) depends on the prior 7

University of California, Berkeley



A Bayesian Calculation

« Using the law of total probability, we have:

PD=1)=PD=1H=0PH=0)+PD=1|H=1)PH=1)
—moP(D=1|H=0)+(1-m)P(D=1|H =1)

so we see that P(D = 1) depends on the prior 7

* Is this a problem?

— i.e., do we have to either decide to be Bayesian and supply the prior, or decide to
be frequentist and abandon this approach?

 No! In the multiple hypothesis testing problem it's easy to
estimate P(D = 1) directly from the data!
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Towards an Algorithm

«  We will plug in an estimate of P(D = 1) into the Bayesian
posterior probability
— this is called empirical Bayesian

« And we will use the empirical Bayesian estimate to set a threshold
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain P-values P; , and sort them from smallest to
largest, denoting the sorted -values as Py
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain P-values FP; , and sort them from smallest to
largest, denoting the sorted P-values as P
— the small ones are the safest to reject
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain P-values FP; , and sort them from smallest to
largest, denoting the sorted P-values as P
— the small ones are the safest to reject

« Now, find the largest k such that:

k
Py < —a
m
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain P-values FP; , and sort them from smallest to
largest, denoting the sorted P-values as P
— the small ones are the safest to reject

« Now, find the largest k such that:
Py < 2
(k) <

P—valug

Hypothesis Index
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Given m tests, obtain P-values P; , and sort them from smallest to
largest, denoting the sorted P-values as P
— the small ones are the safest to reject

« Now, find the largest k such that:
Py < 2
(k) <

* Reject the null hypothesis (i.e., declare discoveries) for  Hypothesis Index
all hypotheses H; such that i <k
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Given m tests, obtain P-values P; , and sort them from smallest to
largest, denoting the sorted P-values as P
— the small ones are the safest to reject

« Now, find the largest k such that:
Py < 2
(k) <

* Reject the null hypothesis (i.e., declare discoveries) for  Hypothesis Index
all hypotheses H; such that i <k

 This controls the FDR!

University of California, Berkeley



Heuristic Argument

a ”¢
k m
« Letting ™ denote the number of true nulls, we have (very roughly):
ak
m —1mMy am
FDR < 20 — m 00 _ 210 )
k k m
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The Online Problem

« Classical statistics, and also the Benjamini & Hochberg

framework, focused on a batch setting in which all data has
already been collected

« E.g., for Benjamini & Hochberg, you need all of the p-values
before you can get started

* |sis possible to consider methods that make sequences of
decisions, and provide FDR control at any moment in time

 |s it conceivable that one can achieve FDR control?

University of California, Berkeley



Offline vs. Online FDR Control

« Classical FDR procedures (such as BH) which make all decisions
simultaneously are called “offline”

* “Online” FDR procedures make decisions one at a time

P P2 P3 P4 P5

v




Example: Many Enterprises Run Thousands
of So-Called A/B Tests Each Day

fr< a? E; vs. E; Color

IP2 <a? B vs. W} Size
Time i . .
lpgga?l . vs. G Orientation

[
p <2 0 Vs. Style
]
Ps<all Vs. Logo
E



Challenges

* |t's not clear how to do change batch procedures such as
Benjamini-Hochberg procedure to be online
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Challenges

* |t's not clear how to do change batch procedures such as
Benjamini-Hochberg procedure to be online

« We might retreat to Bonferroni, which would allow us to set &
to 0.05/n and thereby have a FWER of 0.05 aftern tests
— but what do we do on the (n + 1)th test?
— we eventually can’t do any more tests
— we’ve used up our “alpha wealth”

University of California, Berkeley



A More General Approach: Time-Varying Alpha

Time

Color
Size
Orientation

Style

Logo




More Challenges

 We want to keep going for an arbitrary amount of time, so we
need Y%, oy = 1,and 3.,_, oy < 1for any fixed T
« An example: oy = 27¢

« But now we have less and less power to make discoveries
over time, and eventually we may as well quit

* |s there any way out of this dilemma®?

University of California, Berkeley



A Glimmer of Hope

 Recall that the FDP is a of two counts
 We can make a ratio small in one of two ways:
— make the small
— make the big
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A Glimmer of Hope

 Recall that the FDP is a of two counts
 We can make a ratio small in one of two ways:
— make the small
— make the big

 The numerator has the false-positive rate in it, and so we're
back to the same problem of controlling sums of «; values
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A Glimmer of Hope

 Recall that the FDP is a ratio of two counts
 We can make a ratio small in one of two ways:
— make the numerator small
— make the denominator big
 The numerator has the false-positive rate in it, and so in
terms of controlling the numerator we're back to the same
problem of controlling sums of «; values

« The denominator can be made large by making lots of
discoveries

University of California, Berkeley



A Glimmer of Hope

« Recall that the FDP is a of two counts
 We can make a ratio small in one of two ways:
— make the small
— make the big

 The numerator has the false-positive rate in it, and so in
terms of controlling the numerator we're back to the same
problem of controlling sums of «; values

- The can be made large by making lots of
discoveries

« Perhaps we can earn a bit of alpha whenever we make a
discovery, to be invested and used for false discoveries later

University of California, Berkeley



Online FDR Control : High-Level Picture

Error budget
/ for first test

Remaining error budget
or “alpha-wealth”
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Online FDR Control : High-Level Picture

Error budget
/ for first test

Error budget for

/‘ second test
‘ é‘ Tests use wealth

Remaining error budget\

or “alpha-wealth” »
Infinite process

Discoveries
earn wealth
‘ Error budget

is data-dependent




Online FDR Algorithms

« The first online FDR algorithm was known as “alpha
investing” and is due to Foster and Stine (2008)

« A more recent (and simpler) online FDR algorithm is due
to Javanmard and Montanari, and is called “LORD”

* The basic idea is to renew the alpha wealth every time a
discovery (i.e., rejection) is made, and decay that wealth
forward in time

* The current wealth is the sum of all of the decayed values
of the past wealth increments



Algorithm 1 The LORD Procedure

input: FDR level a, non-increasing sequence {7:}72; such that > o, v = 1,
initial wealth Wy < «
Set ] =7 W()

fort=1,2,... do
p-value P; arrives

if P, < a4, reject P,

api1 = Y1 Wo + Ve 1—m (@ = Wo)H{m <t} +ad 77 yep1-r, {7y <t}

where 7; is time of j-th rejection 7; = min{k : Zle HP <o} =3}
end




A Stripped-Down Version of LORD

* Only consider the most recent rejection
« This renews the wealth, which further decays
 Why does such an approach provide control over the FDR?




A Stripped-Down Version of LORD

* Only consider the most recent rejection
« This renews the wealth, which further decays
 Why does such an approach provide control over the FDR?

* Return to the Bayesian perspective, and consider the
following estimate (an upper bound) of the FDP:

t
FDD(t) := —, 2=y Y
Dim1 WP < aif

« The denominator is just the number of rejections until time ¢,
and the numerator is an upper bound on the probability of
one or more false-positive errors




Analysis

« Break up the sum Zle a; into “episodes” between the
rejections
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« Break up the sum Zle a; into “episodes” between the
rejections

* In each episode, the sum is upper bounded by « Zfﬁ;l Vitl—7
by the definition of (simplified) LORD, where ¢’ is the episode
length and 7 is the time of the most recent rejection
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Analysis

« Break up the sum Zle a; into “episodes” between the
rejections

* In each episode, the sum is upper bounded by « Zfﬁ;l Vitl—7
by the definition of (simplified) LORD, where ¢’ is the episode
length and 7 is the time of the most recent rejection

« This sum is less than « by the definition of the {~: } sequence
« The number of episodes is: Zﬁzl H{P <a;}




Analysis

« Break up the sum Zle a; into “episodes” between the
rejections

* In each episode, the sum is upper bounded by « Zfﬁ;l Vitl—7
by the definition of (simplified) LORD, where ¢’ is the episode
length and 7 is the time of the most recent rejection

« This sum is less than « by the definition of the {~: } sequence
« The number of episodes is: Zﬁzl HP <a;}
* And so we conclude:

FDP(t) :=




And Now We Connect to the FDR

We can write the FDR in the following nice form:

<tioall WD < @y
FDR = E Zzgt,znull { }

Zigt WP < o}




And Now We Connect to the FDR

* We can write the FDR in the following nice form:

zigt,inull HP; < a;f
Zigt WP <o}

« To simplify our derivation, we will make an approximation (the “modified
FDR”):

FDR =E

]E[Zigt,i nant 1P < i}

FDR ~
E[2 i 1P < ai}]




And We Obtain an Actual Proof

We make the mFDR approximation:

FDR ~ E[Zigt,i null 1{P¢ < Oéz'}]

E[) i<t UPi < )]




And We Obtain an Actual Proof

 We make the mFDR approximation:

E[Zigt,z‘ nun P < o }]

FDR, ~
E[> i<t P < )]

and then compute:

= > EEMP <o}lell= Y E[P{P < oilai}]

1<t,7 null 1<t,i null 1<t,i null
= Y Ela] <E[Y o] <oE[Y 1P <ai]
1<t,7 null 1<t 1<t
where the last line uses: .
FDP(t) := iz % <a




And We Obtain an Actual Proof

 We make the mFDR approximation:

E[Zigt,z‘ nun P < o }]

FDR, ~
E[> i<t P < )]

and then compute:

1<t,7 null 1<t,7 null 1<t,7 null
= Y Elu] <ED o] <aE)) P <oy}l
1<t,7 null 1<t 1<t
where the last line uses: .
FDP(f) = —2i=1% <,
« This establishes: > i1 P < i}
FDR < «



