

DS 102: Data, Inference, and Decisions

Lecture 3

Michael Jordan
University of California, Berkeley

The Basic Two-by-Two Table

TN = True Negative

FP = False Positive

FN = False Negative

FP = True Positive

Some Row-Wise Rates

$$sensitivity = \frac{n_{11}}{n_{10} + n_{11}}$$

aka, "true positive rate"
or "recall" or "power"

Some Row-Wise Rates

specificity =
$$\frac{n_{00}}{n_{00}+n_{01}}$$

aka, "true negative rate" or "selectivity"

The Bayesian Posterior

The posterior probability of the hypothesis given the data:

$$P(\text{Reality} | \text{Decision}) = \frac{P(\text{Decision} | \text{Reality})P(\text{Reality})}{P(\text{Decision})}$$

where P(Reality) is the prior (the "prevalence")

Let's Return to our Column-Wise Rates

false discovery proportion
$$= \frac{n_{01}}{n_{01} + n_{11}}$$

The Goal: Control Errors A Priori

- We've introduced concepts such as false-positive rates and false-discovery rates as descriptions of performance
- We now want to use them as ways to design algorithms
- We want to give a priori guarantees that a certain algorithm will have good performance

The Neyman-Pearson Paradigm

The row-focused Neyman-Pearson paradigm turns the problem into a constrained optimization problem

The Neyman-Pearson Paradigm

- The row-focused Neyman-Pearson paradigm turns the problem into a constrained optimization problem
- The idea is to control the false-positive probability, $P(D=1\,|\,H=0)$, to be less than some target value, say 0.05
 - i.e., make the specificity be greater than 0.95
- And to maximize the true-positive probability subject to that constraint
 - i.e., maximize the sensitivity subject to the constraint on the specificity

The Neyman-Pearson Paradigm

- The row-focused Neyman-Pearson paradigm turns the problem into a constrained optimization problem
- The idea is to control the false-positive probability, $P(D=1\,|\,H=0)$, to be less than some target value, say 0.05

 And to maximize the true-positive probability (the sensitivity) subject to that constraint

P-Values

- Consider a simple null hypothesis $\mathbb P$
- Consider a statistic, T(X), which has a continuous distribution under the null, and let F(t) denote its tail cdf:

$$F(t) = \mathbb{P}(T > t)$$

- Define the P-value as P = F(T)
- The P-value has a uniform distribution under the null:

$$\mathbb{P}(P < p) = \mathbb{P}(F(T) < p) = \mathbb{P}(T > F^{-1}(p)) = F(F^{-1}(p)) = p$$

A Generic Decision Rule

• Reject H_i if the random variable T_i is equal to 1:

$$T_i = \begin{cases} 1, & \text{if } P_i \le \alpha_i \\ 0, & \text{otherwise} \end{cases}$$

• This yields Neyman-Pearson control in the case of a single simple hypothesis (where all the H_i are the same and all the α_i are set equal to some fixed value, say 0.05)

Multiple Hypothesis Testing

- Let's now consider multiple tests, in particular repeated tests of the same hypothesis
- The row-focused Neyman-Pearson paradigm provides a priori control over errors made in those cases in which the null hypothesis is true
 - this isn't very natural when the hypotheses are "cases" which arise randomly according to their prevalence
 - it also makes little sense when we're testing a bag of different hypothesis (cf., A/B testing)
- Our example with 10,000 A/B tests showed that Neyman-Pearson tests do not control column-wise quantities such as the FDP

Example

Suppose that we obtain p-values from 25 experiments

 Suppose that we simply reject each test independently if its p-value is smaller than some threshold

 Suppose that we simply reject each test independently if its p-value is smaller than some thresholding

An oracle knows the truth: that the blue-shaded bars correspond to nulls (Reality = 0) and the red-shaded bars to alternatives (Reality = 1)

 We see that the decision-maker is avoiding false negatives, but is making a lot of false positives, and its false discovery proportion is 4/11; pretty bad!

Bonferroni

Hypothesis Index

Bonferroni avoids those false positives, but is making a lot of false negatives, and its false discovery proportion is 1/2; even worse!

Is There Something Else We Can Do?

- It's not clear that any fixed threshold will work, and it's not how to set such a threshold without knowing the truth
- We have to think out of the box: we'll be developing a
 procedure that works with sorted p-values, and compares
 them to a line with a positive slope, not a horizontal line!

Recall Our Bayesian Calculation

$$P(H = 0 | D = 1) = \frac{P(D = 1 | H = 0)P(H = 0)}{P(D = 1)}$$
$$= \frac{P(\text{false positive})\pi_0}{P(D = 1)}$$

Recall Our Bayesian Calculation

$$P(H = 0 | D = 1) = \frac{P(D = 1 | H = 0)P(H = 0)}{P(D = 1)}$$
$$= \frac{P(\text{false positive})\pi_0}{P(D = 1)}$$

- We can (quite reasonably) upper bound π_0 with 1, and upper bound P(false positive) using Neyman-Pearson thinking
- And so the numerator can be controlled; what about the denominator?

A Bayesian Calculation

Using the law of total probability, we have:

$$P(D = 1) = P(D = 1 | H = 0)P(H = 0) + P(D = 1 | H = 1)P(H = 1)$$

A Bayesian Calculation

Using the law of total probability, we have:

$$P(D=1) = P(D=1 | H=0)P(H=0) + P(D=1 | H=1)P(H=1)$$
$$= \pi_0 P(D=1 | H=0) + (1 - \pi_0)P(D=1 | H=1)$$

so we see that P(D=1) depends on the prior π_0

A Bayesian Calculation

Using the law of total probability, we have:

$$P(D=1) = P(D=1 | H=0)P(H=0) + P(D=1 | H=1)P(H=1)$$
$$= \pi_0 P(D=1 | H=0) + (1 - \pi_0)P(D=1 | H=1)$$

so we see that P(D=1) depends on the prior π_0

- Is this a problem?
 - i.e., do we have to either decide to be Bayesian and supply the prior, or decide to be frequentist and abandon this approach?
- No! In the multiple hypothesis testing problem it's easy to estimate P(D=1) directly from the data!

Towards an Algorithm

- We will plug in an estimate of P(D=1) into the Bayesian posterior probability
 - this is called empirical Bayesian
- And we will use the empirical Bayesian estimate to set a threshold

Benjamini & Hochberg (1995) proposed an algorithm that does it

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted -values as $P_{(k)}$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted P-values as $P_{(k)}$
 - the small ones are the safest to reject

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted P-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest *k* such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted P-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

Hypothesis Index

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted P-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m}\alpha$$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain P-values P_i , and sort them from smallest to largest, denoting the sorted P-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m}\alpha$$

This controls the FDR!

Heuristic Argument

• Letting m_0 denote the number of true nulls, we have (very roughly):

$$FDR \le \frac{\gamma m_0}{k} = \frac{\frac{\alpha k}{m} m_0}{k} = \frac{\alpha m_0}{m} \le \alpha$$

The Online Problem

- Classical statistics, and also the Benjamini & Hochberg framework, focused on a batch setting in which all data has already been collected
- E.g., for Benjamini & Hochberg, you need all of the p-values before you can get started
- Is is possible to consider methods that make sequences of decisions, and provide FDR control at any moment in time
- Is it conceivable that one can achieve lifetime FDR control?

Offline vs. Online FDR Control

 Classical FDR procedures (such as BH) which make all decisions simultaneously are called "offline"

"Online" FDR procedures make decisions one at a time

Example: Many Enterprises Run Thousands of So-Called A/B Tests Each Day

Challenges

• It's not clear how to do change batch procedures such as Benjamini-Hochberg procedure to be online

Challenges

- It's not clear how to do change batch procedures such as Benjamini-Hochberg procedure to be online
- We might retreat to Bonferroni, which would allow us to set α to 0.05/n and thereby have a FWER of 0.05 after n tests
 - but what do we do on the (n+1)th test?
 - we eventually can't do any more tests
 - we've used up our "alpha wealth"

A More General Approach: Time-Varying Alpha

More Challenges

- We want to keep going for an arbitrary amount of time, so we need $\sum_{t=1}^{\infty} \alpha_t = 1$, and $\sum_{t=1}^{T} \alpha_t < 1$ for any fixed T
- An example: $\alpha_t = 2^{-t}$
- But now we have less and less power to make discoveries over time, and eventually we may as well quit
- Is there any way out of this dilemma?

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big
- The numerator has the false-positive rate in it, and so we're back to the same problem of controlling sums of α_i values

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big
- The numerator has the false-positive rate in it, and so in terms of controlling the numerator we're back to the same problem of controlling sums of α_i values
- The denominator can be made large by making lots of discoveries

- Recall that the FDP is a ratio of two counts
- We can make a ratio small in one of two ways:
 - make the numerator small
 - make the denominator big
- The numerator has the false-positive rate in it, and so in terms of controlling the numerator we're back to the same problem of controlling sums of α_i values
- The denominator can be made large by making lots of discoveries
- Perhaps we can earn a bit of alpha whenever we make a discovery, to be invested and used for false discoveries later

Online FDR Algorithms

- The first online FDR algorithm was known as "alpha investing" and is due to Foster and Stine (2008)
- A more recent (and simpler) online FDR algorithm is due to Javanmard and Montanari, and is called "LORD"
- The basic idea is to renew the alpha wealth every time a discovery (i.e., rejection) is made, and decay that wealth forward in time
- The current wealth is the sum of all of the decayed values of the past wealth increments

Algorithm 1 The LORD Procedure

input: FDR level α , non-increasing sequence $\{\gamma_t\}_{t=1}^{\infty}$ such that $\sum_{t=1}^{\infty} \gamma_t = 1$, initial wealth $W_0 \leq \alpha$

Set $\alpha_1 = \gamma_1 W_0$

for t = 1, 2, ... do

p-value P_t arrives

if $P_t \leq \alpha_t$, reject P_t

$$\alpha_{t+1} = \gamma_{t+1} W_0 + \gamma_{t+1-\tau_1} (\alpha - W_0) \mathbf{1} \{ \tau_1 < t \} + \alpha \sum_{j=1}^{\infty} \gamma_{t+1-\tau_j} \mathbf{1} \{ \tau_j < t \},$$

where τ_j is time of j-th rejection $\tau_j = \min\{k : \sum_{l=1}^k \mathbf{1}\{P_l \le \alpha_l\} = j\}$

 \mathbf{end}

A Stripped-Down Version of LORD

- Only consider the most recent rejection
- This renews the wealth, which further decays
- Why does such an approach provide control over the FDR?

A Stripped-Down Version of LORD

- Only consider the most recent rejection
- This renews the wealth, which further decays
- Why does such an approach provide control over the FDR?
- Return to the Bayesian perspective, and consider the following estimate (an upper bound) of the FDP:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}}$$

• The denominator is just the number of rejections until time t, and the numerator is an upper bound on the probability of one or more false-positive errors

• Break up the sum $\sum_{i=1}^t \alpha_i$ into "episodes" between the rejections

- Break up the sum $\sum_{i=1}^t \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection

- Break up the sum $\sum_{i=1}^t \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection
- This sum is less than α by the definition of the $\{\gamma_i\}$ sequence

- Break up the sum $\sum_{i=1}^{t} \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection
- This sum is less than α by the definition of the $\{\gamma_i\}$ sequence
- The number of episodes is: $\sum_{i=1}^{t} 1\{P_i \leq \alpha_i\}$

- Break up the sum $\sum_{i=1}^{t} \alpha_i$ into "episodes" between the rejections
- In each episode, the sum is upper bounded by $\alpha \sum_{i=1}^{t'} \gamma_{i+1-\tau}$, by the definition of (simplified) LORD, where t' is the episode length and τ is the time of the most recent rejection
- This sum is less than α by the definition of the $\{\gamma_i\}$ sequence
- The number of episodes is: $\sum_{i=1}^{t} 1\{P_i \leq \alpha_i\}$
- And so we conclude:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

And Now We Connect to the FDR

We can write the FDR in the following nice form:

$$FDR = \mathbb{E}\left[\frac{\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}}{\sum_{i \leq t} 1\{P_i \leq \alpha_i\}}\right]$$

And Now We Connect to the FDR

We can write the FDR in the following nice form:

$$FDR = \mathbb{E}\left[\frac{\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}}{\sum_{i \leq t} 1\{P_i \leq \alpha_i\}}\right]$$

To simplify our derivation, we will make an approximation (the "modified FDR"):

FDR
$$\approx \frac{\mathbb{E}\left[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}\right]}{\mathbb{E}\left[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}\right]}$$

And We Obtain an Actual Proof

We make the mFDR approximation:

FDR
$$\approx \frac{\mathbb{E}\left[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}\right]}{\mathbb{E}\left[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}\right]}$$

And We Obtain an Actual Proof

We make the mFDR approximation:

FDR
$$\approx \frac{\mathbb{E}[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}]}{\mathbb{E}[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}]}$$

and then compute:

$$\mathbb{E}\left[\sum_{i \leq t, i \text{ null}} \mathbf{1}\{P_i \leq \alpha_i\}\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{E}[\mathbf{1}\{P_i \leq \alpha_i\} | \alpha_i]] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{P}\{P_i \leq \alpha_i | \alpha_i\}]$$

$$= \sum_{i \leq t, i \text{ null}} \mathbb{E}[\alpha_i] \leq \mathbb{E}[\sum_{i \leq t} \alpha_i] \leq \alpha \mathbb{E}[\sum_{i \leq t} \mathbf{1}\{P_i \leq \alpha_i\}]$$

where the last line uses:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

And We Obtain an Actual Proof

We make the mFDR approximation:

FDR
$$\approx \frac{\mathbb{E}[\sum_{i \leq t, i \text{ null }} 1\{P_i \leq \alpha_i\}]}{\mathbb{E}[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}]}$$

and then compute:

$$\mathbb{E}\left[\sum_{i \leq t, i \text{ null}} 1\{P_i \leq \alpha_i\}\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{E}[1\{P_i \leq \alpha_i\} | \alpha_i]] = \sum_{i \leq t, i \text{ null}} \mathbb{E}[\mathbb{P}\{P_i \leq \alpha_i | \alpha_i\}]$$

$$= \sum_{i \leq t, i \text{ null}} \mathbb{E}[\alpha_i] \leq \mathbb{E}[\sum_{i \leq t} \alpha_i] \leq \alpha \mathbb{E}[\sum_{i \leq t} 1\{P_i \leq \alpha_i\}]$$

where the last line uses:

$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \le \alpha_i\}} \le \alpha$$

This establishes:

$$FDR < \alpha$$