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Basics of Decision Making

« We'll start by considering the most simple of decision-
making formulations

« Let's suppose that is in one of two states, which
we denote as 0 or 1
« We don’t observe this state, but we do obtain that is

drawn from a distribution that depends on whether the
state is 0 or 1

« We make a based on the Data, which we
denote as 0 or 1

« We can think of the Decision as our best guess as to the
state of Reality or, more generally, as an action we think
is best given our guess of the state of Reality

University of California, Berkeley



The Basic Two-by-Two Table
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The Basic Two-by-Two Table

Decision
0 1

TN = True Negative

TN FP = False Positive

Reality

FN = False Negative

FP = True Positive

Rough goal: lots of green outcomes, few red outcomes!

University of California, Berkeley



Towards a Statistical Framework

» Let’'s now imagine that we not only make a decision,
but we build a

« We want to evaluate the algorithm not just on one
problem, but on a set of related problems

« Concretely, we may have a collection of hypothesis-
testing problems, where we repeatedly decide whether
to accept the null or accept the alternative

 Or we may have a set of classification decisions, where
we repeatedly classify data points into one of two
classes

University of California, Berkeley



Towards a Statistical Framework
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Some Row-Wise Rates
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Some Row-Wise Rates
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Comments on the Row-Wise Rates

» They can be thought of as estimates of conditional
probabilities
— e.g., sensitivity approximates P(Decision = 1| Reality = 1)
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Comments on the Row-Wise Rates

» They can be thought of as estimates of conditional
probabilities
— e.g., sensitivity approximates P(Decision = 1| Reality = 1)
* As such, they are not dependent on the prevalence
(i.e., the probabilities of the two states of Reality in the
population)
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The Bayesian Posterior

« The posterior probability of the hypothesis given the data:

P(Decision | Reality) P(Reality)
P(Decision)

P(Reality | Decision) =

where P(Reality) is the prior (the “prevalence”)

University of California, Berkeley



Back to Hypothesis Testing

» Let’s now consider a column-wise perspective
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Let’s Return to our Column-Wise Rates
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Comments on the Column-Wise Rates

» They can be thought of as estimates of conditional
probabilities

* They are dependent on the prevalence (i.e., the
probabilities of the two states of Reality in the
population), via Bayes’ Theorem

— as such, they are more Bayesian
— this is arguably a good thing

« Notation: let H denote Reality, and let DD denote the
decision

University of California, Berkeley



Bayes’ Theorem

P(D =1|H = 0)P(H = 0)
P(D=1)

PH=0|D=1)=
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Bayes’ Theorem

P(D =1|H = 0)P(H = 0)
P(D=1)

PH=0|D=1)=

This relates a P(D=1|H =0),
to a ,P(H:O\D_l)

And shows that the latter depends on the
P(H=0)=1-P(H=1)
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A Bayesian Calculation

P(D=1|H =0)P(H =0)
P(D=1)
~ P(D=1|H=0)m
B P(D =1)
B P(D=1|H =0)ng
- PD=1|H=0m+PD=1|H =1)(1—m)
1

— P(D=1|H=1) 1—=
L+ so=11m=0) 70 |
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P(H=0|D=1)=




Some Implications

 We see that the prevalence has a major effect on the
probability of an error

« Supposethat P(D =1|H =1) = 0.8 and
P(D=1|H =0)=0.05

« Then the ratio is 16/1, and if the prevalence was 0.5,
the probability of an error would be small

« But.... if the prevalence is small, say 1/1000, then the
factor (1 — my)/m is tiny and it kills the 16/1

» And so the probability of error goes to one ®

University of California, Berkeley



Type I error rate (per test) = 0.05

9,900 true 495 false
different,
independent 100 non- 80 true
nulls discoveries

A/B tests
Power (per test) = 0.80

“false discovery
rate” = 495/575



Type I error rate (per test) = 0.05

9,900 true 495 false
Ru.n 10,000 nulls discoveries
different,
independent 100 non- 80 true
nulls discoveries

A/B tests
Power (per test) = 0.80

“false discovery
rate” = 495/575

(NB: We're again not being rigorous at this point; FDR is
actually an expectation of this proportion. We'll do it right
anon.)



The Goal: Control Errors A Priori

« We've introduced concepts such as false-positive

rates and false-discovery rates as of
performance

 We now want to use them as ways to
algorithms

 We want to give that a certain

algorithm will have good performance

University of California, Berkeley



The Neyman-Pearson Paradigm

« The row-focused Neyman-Pearson paradigm turns the problem into a
constrained optimization problem

University of California, Berkeley



The Neyman-Pearson Paradigm

« The row-focused Neyman-Pearson paradigm turns the problem into a
constrained optimization problem

- The idea is to control the ,P(D=1|H =0),
to be less than some target value, say 0.05
« And to maximize the (the power) subject to

that constraint
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The Neyman-Pearson Paradigm

« The row-focused Neyman-Pearson paradigm turns the problem into a
constrained optimization problem

- The idea is to control the ,P(D=1|H =0),
to be less than some target value, say 0.05
« And to maximize the (the power) subject to

that constraint
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P-Values

« Consider a simple null hypothesis [P

« Consider a statistic, T'( X ), which has a continuous distribution
under the null, and let F'(¢) denote its tail cdf:

F(t) =P(T > t)

- Define the P-value as P = F'(T))
« The P-value has a uniform distribution under the nuill:

P(P <p) =P(F(T) <p)=P(T > F (p) = F(F ' (p)) =p

University of California, Berkeley



A Generic Decision Rule

* Reject H; if the random variable 7} is equal to 1:

* 1 0, otherwise

» This yields Neyman-Pearson control in the case of a single
simple hypothesis (where all the H; are the same and all the ¢;
are set equal to some fixed value, say 0.05)

University of California, Berkeley



Multiple Hypothesis Testing

» Let’s now consider multiple tests, in particular repeated
tests of the same hypothesis

» The row-focused Neyman-Pearson paradigm provides
a priori control over errors made in those cases in
which the null hypothesis is true

« This isn’t very natural when the hypotheses are “cases”
which arise randomly according to their prevalence

» It also makes little sense when we're testing a bag of
different hypothesis (cf., A/B testing)

University of California, Berkeley



Multiple Decisions: The Statistical Problem
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A First Attempt: Bonferroni

» Let’s suppose that we're conducting m tests, not just one

» Let V denote the number of false-positive errors in my m™m
tests, and let { £; = 1} denote the event of a false positive
error on the 7th test

- Let’s use a rejection threshold of «/m in the classical
paradigm instead of &

 This controls a certain error rate...

University of California, Berkeley



A First Attempt: Bonferroni
PV >1) = P(UZL{E; = 1})

< ZP({Ez' =1})

m
< Zoz/m
i=1

=

 We've controlled a quantity known as the
(FWER)

University of California, Berkeley



Example

P-value

Hypothesis Index

» Suppose that we obtain p-values from 25 experiments



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

« Suppose that we simply reject each test independently if its p-value is
smaller than some thresholding



Naive Multiple Decision-Making
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« Suppose that we simply reject each test independently if its p-value is
smaller than some thresholding



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

* An oracle knows the truth: that the blue-shaded bars correspond to nulls
(Reality = 0) and the red-shaded bars to alternatives (Reality = 1)



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

* We see that the decision-maker is avoiding false negatives, but its false
discovery proportion is 4/11; pretty bad!



Naive Multiple Decision-Making

A

P-value

Hypothesis Index

« We see that the decision-maker is avoiding false negatives, but is making a
lot of false positives, and its false discovery proportion is 4/11; pretty bad!



Bonferroni

P-value

Hypothesis Index

« Bonferroni avoids those false positives, but is making a lot of false
negatives, and its false discovery proportion is 1/2; even worse!



Is There Something Else We Can Do?

« It's not clear that any fixed threshold will work, and it’s not
how to set such a threshold without knowing the truth

 We have to think out of the box: we’ll be developing a
procedure that works with sorted p-values, and compares
them to a line with a positive slope, not a horizontal line!

A

P-value

Hypothesis Index
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Is There Something Else We Can Do?

« It's not clear that any fixed threshold will work, and it’s not
how to set such a threshold without knowing the truth

 We have to think out of the box: we’ll be developing a
procedure that works with sorted p-values, and compares
them to a line with a positive slope, not a horizontal line!

A
o’
But let’s not

get ahead of
ourselves

dly

Hypothesis Index

University of California, Berkeley
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A Bayesian Calculation

P(H=0,D=1)

P(H=0|D=1) = ——F5"

University of California, Berkeley



A Bayesian Calculation

P(H=0,D = 1)
P(D=1)

. P(D=1|H=0)P(H =0)

B P(D=1)

_ P(Type I error) - mg

P(D=1)

We could upper bound 7mg with 1, and so the numerator can
be controlled; what about the denominator?

University of California, Berkeley

PH=0|D=1)=




A Bayesian Calculation

« Using the law of total probability, we have:

P(D=1)=PD=1|H=0PH=0)+PD=1|H=1)P(H=1)

University of California, Berkeley



A Bayesian Calculation

« Using the law of total probability, we have:

PD=1)=PD=1H=0PH=0)+PD=1|H=1)PH=1)
—moP(D=1|H=0)+(1-m)P(D=1|H =1)

so we see that P(D = 1) depends on the prior 7

University of California, Berkeley



A Bayesian Calculation

« Using the law of total probability, we have:

PD=1)=PD=1H=0PH=0)+PD=1|H=1)PH=1)
—moP(D=1|H=0)+(1-m)P(D=1|H =1)

so we see that P(D = 1) depends on the prior 7

* Is this a problem?

— i.e., do we have to either decide to be Bayesian and supply the prior, or decide to
be frequentist and abandon this approach?

-+ No! Note that it's easy to estimate P(D = 1) directly from the
datal!

University of California, Berkeley



Towards an Algorithm

«  We will plug in an estimate of P(D = 1) into the Bayesian
posterior probability
— this is called empirical Bayesian
« And we will use the empirical Bayesian estimate to set a threshold
« Let’s consider

University of California, Berkeley



Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it
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« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain p-values F;, and sort them from smallest to
largest, denoting the sorted p-values as P
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largest, denoting the sorted p-values as P
— the small ones are the safest to reject
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all hypotheses H; such that i <k
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Controlling the FDR

« Benjamini & Hochberg (1995) proposed an algorithm that does it

« Givenm tests, obtain p-values F;, and sort them from smallest to
largest, denoting the sorted p-values as P
— the small ones are the safest to reject

« Now, find the largest k such that:

k
Py < —a
m

* Reject the null hypothesis (i.e., declare discoveries) for
all hypotheses H; such that i <k

 This controls the FDR!

University of California, Berkeley



The Online Problem

« Classical statistics, and also the Benjamini & Hochberg

algorithm focused on a batch setting in which all data has
already been collected

« E.g., for Benjamini & Hochberg, you need all of the p-values
before you can get started

* |sis possible to consider methods that make sequences of
decisions, and provide FDR control at any moment in time

* |s it conceivable that one can achieve lifetime FDR control?

University of California, Berkeley
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Online FDR control : high-level picture
Error budget
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‘ Error budget for
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Online FDR control : high-level picture

Error budget
/ for first test

Error budget for

/‘ second test

‘ Tests use wealth

\‘

Discoveries
earn wealth

Error budget

Remaining error budget is data-dependent
or “alpha-wealth” .
Infinite process




Online FDR control

» classical FDR literature assumes that the data for all hypotheses is collected
at once, and only after all the p-values are available, one can decide which of
the hypotheses should be proclaimed discoveries

* in modern testing we often do not know how many hypotheses we want to
test in advance

* instead, a possibly infinite sequence of tests (i.e. p-values) arrives
sequentially

« we have to make decisions online, with no knowledge of future tests, in a way
that guarantees FDR control under a pre-specified level o at any given time

« motivating examples: A/B testing, large-scale clinical trials...



Online vs offline FDR control

 classical FDR procedures (like BH) which
make all decisions simultaneously are called
“offline”

online FDR procedures make decisions one at
a time

P1 P2 P3 P4 Ps

ooy




Example: A/B testing

« online FDR algorithms pick significance level o

adaptively
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Online FDR algorithm

* the first online FDR algorithm was
due to Foster and Stine (2008)

« a more recent (and simpler) online
FDR algorithm is due to Javanmard
and Montanari, and is called LORD

* Iits basic idea is to assign a; ina
way that ensures

t
FDP(t) = — 2i=1% <,




Why ensuring ey~ _ S
controls FDR:
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Back to Inference

« Can we develop general frameworks that allow us to
control column-wise quantities like the false-discovery
rate (FDR)?

— in a similar way as Neyman-Pearson controls the false-positive
rate

 To be continued...

University of California, Berkeley



