

DS 102: Data, Inference, and Decisions

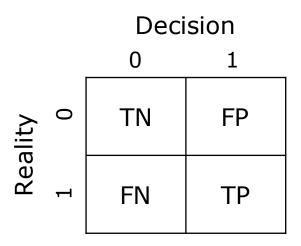
Lecture 2

Michael Jordan
University of California, Berkeley

Basics of Decision Making

- We'll start by considering the most simple of decisionmaking formulations
- Let's suppose that Reality is in one of two states, which we denote as 0 or 1
- We don't observe this state, but we do obtain Data that is drawn from a distribution that depends on whether the state is 0 or 1
- We make a Decision based on the Data, which we denote as 0 or 1
- We can think of the Decision as our best guess as to the state of Reality or, more generally, as an action we think is best given our guess of the state of Reality

The Basic Two-by-Two Table



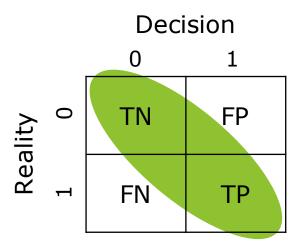
TN = True Negative

FP = False Positive

FN = False Negative

FP = True Positive

The Basic Two-by-Two Table



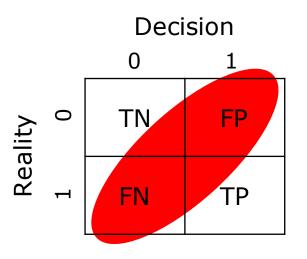
TN = True Negative

FP = False Positive

FN = False Negative

FP = True Positive

The Basic Two-by-Two Table



TN = True Negative

FP = False Positive

FN = False Negative

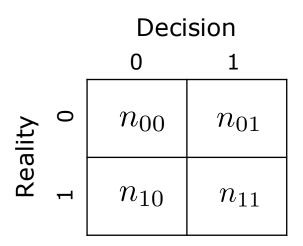
FP = True Positive

Rough goal: lots of green outcomes, few red outcomes!

Towards a Statistical Framework

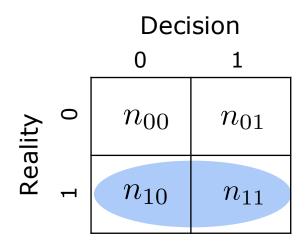
- Let's now imagine that we not only make a decision, but we build a decision-making algorithm
- We want to evaluate the algorithm not just on one problem, but on a set of related problems
- Concretely, we may have a collection of hypothesistesting problems, where we repeatedly decide whether to accept the null or accept the alternative
- Or we may have a set of classification decisions, where we repeatedly classify data points into one of two classes

Towards a Statistical Framework



$$N = n_{00} + n_{01} + n_{10} + n_{11}$$

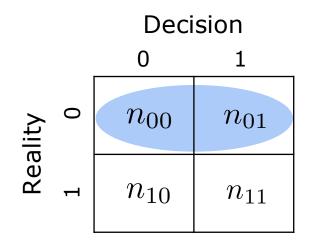
Some Row-Wise Rates



$$sensitivity = \frac{n_{11}}{n_{10} + n_{11}}$$

aka, "true positive rate" or "recall" or "power"

Some Row-Wise Rates



specificity =
$$\frac{n_{00}}{n_{00}+n_{01}}$$

aka, "true negative rate" or "selectivity"

Comments on the Row-Wise Rates

- They can be thought of as estimates of conditional probabilities
 - e.g., sensitivity approximates P(Decision = 1 | Reality = 1)

Comments on the Row-Wise Rates

- They can be thought of as estimates of conditional probabilities
 - e.g., sensitivity approximates P(Decision = 1 | Reality = 1)
- As such, they are not dependent on the prevalence (i.e., the probabilities of the two states of Reality in the population)

The Bayesian Posterior

The posterior probability of the hypothesis given the data:

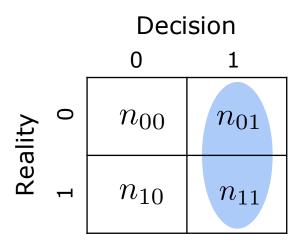
$$P(\text{Reality} | \text{Decision}) = \frac{P(\text{Decision} | \text{Reality})P(\text{Reality})}{P(\text{Decision})}$$

where P(Reality) is the prior (the "prevalence")

Back to Hypothesis Testing

Let's now consider a column-wise perspective

Let's Return to our Column-Wise Rates



false discovery proportion
$$= \frac{n_{01}}{n_{01} + n_{11}}$$

Comments on the Column-Wise Rates

- They can be thought of as estimates of conditional probabilities
- They are dependent on the prevalence (i.e., the probabilities of the two states of Reality in the population), via Bayes' Theorem
 - as such, they are more Bayesian
 - this is arguably a good thing
- Notation: let H denote Reality, and let D denote the decision

Bayes' Theorem

$$P(H = 0 \mid D = 1) = \frac{P(D = 1 \mid H = 0)P(H = 0)}{P(D = 1)}$$

Bayes' Theorem

$$P(H = 0 \mid D = 1) = \frac{P(D = 1 \mid H = 0)P(H = 0)}{P(D = 1)}$$

- This relates a row-wise quantity, $P(D=1\,|\,H=0)$, to a column-wise quantity, $P(H=0\,|\,D=1)$
- And shows that the latter depends on the prevalence: P(H=0)=1-P(H=1)

A Bayesian Calculation

$$P(H = 0 | D = 1) = \frac{P(D = 1 | H = 0)P(H = 0)}{P(D = 1)}$$

$$= \frac{P(D = 1 | H = 0)\pi_0}{P(D = 1)}$$

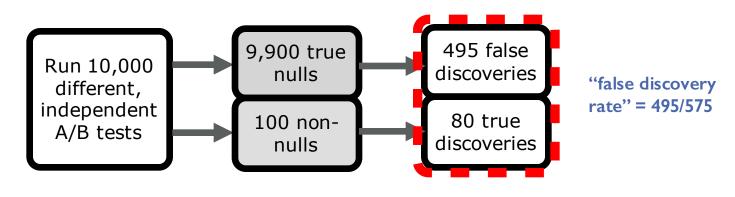
$$= \frac{P(D = 1 | H = 0)\pi_0}{P(D = 1 | H = 0)\pi_0 + P(D = 1 | H = 1)(1 - \pi_0)}$$

$$= \frac{1}{1 + \frac{P(D = 1 | H = 1)}{P(D = 1 | H = 0)} \frac{1 - \pi_0}{\pi_0}}$$

Some Implications

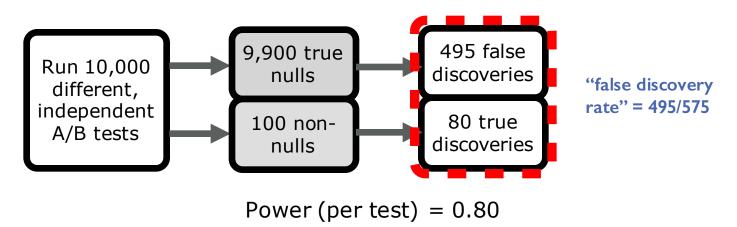
- We see that the prevalence has a major effect on the probability of an error
- Suppose that $P(D=1\,|\,H=1)=0.8$ and $P(D=1\,|\,H=0)=0.05$
- Then the ratio is 16/1, and if the prevalence was 0.5, the probability of an error would be small
- But.... if the prevalence is small, say 1/1000, then the factor $(1 \pi_0)/\pi_0$ is tiny and it kills the 16/1
- And so the probability of error goes to one ③

Type I error rate (per test) = 0.05



Power (per test) = 0.80

Type I error rate (per test) = 0.05



(NB: We're again not being rigorous at this point; FDR is actually an expectation of this proportion. We'll do it right anon.)

The Goal: Control Errors A Priori

- We've introduced concepts such as false-positive rates and false-discovery rates as descriptions of performance
- We now want to use them as ways to design algorithms
- We want to give a priori guarantees that a certain algorithm will have good performance

The Neyman-Pearson Paradigm

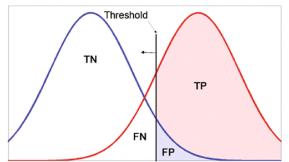
The row-focused Neyman-Pearson paradigm turns the problem into a constrained optimization problem

The Neyman-Pearson Paradigm

- The row-focused Neyman-Pearson paradigm turns the problem into a constrained optimization problem
- The idea is to control the false-positive probability, $P(D=1\,|\,H=0)$, to be less than some target value, say 0.05
- And to maximize the true-positive probability (the power) subject to that constraint

The Neyman-Pearson Paradigm

- The row-focused Neyman-Pearson paradigm turns the problem into a constrained optimization problem
- The idea is to control the false-positive probability, $P(D=1\,|\,H=0)$, to be less than some target value, say 0.05
- And to maximize the true-positive probability (the power) subject to that constraint



P-Values

- Consider a simple null hypothesis $\mathbb P$
- Consider a statistic, T(X), which has a continuous distribution under the null, and let F(t) denote its tail cdf:

$$F(t) = \mathbb{P}(T > t)$$

- Define the P-value as P = F(T)
- The P-value has a uniform distribution under the null:

$$\mathbb{P}(P < p) = \mathbb{P}(F(T) < p) = \mathbb{P}(T > F^{-1}(p)) = F(F^{-1}(p)) = p$$

A Generic Decision Rule

• Reject H_i if the random variable T_i is equal to 1:

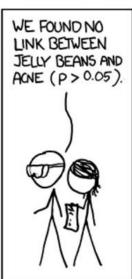
$$T_i = \begin{cases} 1, & \text{if } P_i \le \alpha_i \\ 0, & \text{otherwise} \end{cases}$$

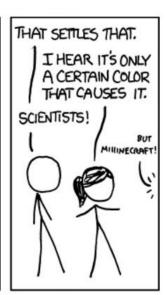
• This yields Neyman-Pearson control in the case of a single simple hypothesis (where all the H_i are the same and all the α_i are set equal to some fixed value, say 0.05)

Multiple Hypothesis Testing

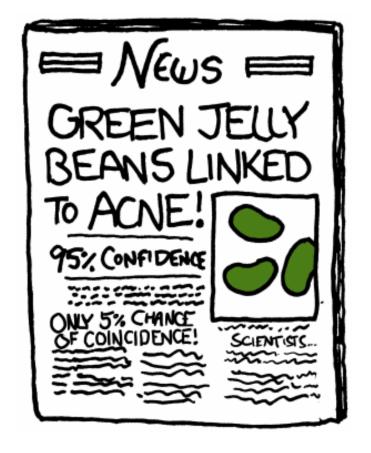
- Let's now consider multiple tests, in particular repeated tests of the same hypothesis
- The row-focused Neyman-Pearson paradigm provides a priori control over errors made in those cases in which the null hypothesis is true
- This isn't very natural when the hypotheses are "cases" which arise randomly according to their prevalence
- It also makes little sense when we're testing a bag of different hypothesis (cf., A/B testing)

Multiple Decisions: The Statistical Problem





WE ROUND NO	WE FOUND NO	WE FOUND NO	WE POUND NO	WE FOUND NO
LINK BETIVETS	LINK BETWEEN	LINK GETWEEN	LINK BETWEEN	LINK GETHERN
PURPLE JELLY	BROWN TELLY	PINK JELLY	BUE JELLY	TEAL JELY
BEANS AND ACNE	BEANS AND ACNE	BEANS AND AGNE	BEANS AND AGNE	BEANS AND ASNE
(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).
WE FOUND NO	WE POUND NO	WE POUND NO	WE POUND NO	WE FOUND NO
LINK BETWEEN	LINK BETIJEEN	LINK GETVEEN	LINK GETVEEN	LINK GETVEEN
SALMON JELLY	RED JELLY	TURQUOISE JELLY	MAGENTA JELLY	YELLOY JELLY
BEARS AND ACIE	GEANS AND ANNE	SEANS ARD POUR	GEANS AND ANE	GEARS AND ADDE
(P > 0.05).	(P > 0.05).	(P > 0.05).	(P>0.05).	(P > 0.05).
WE FOUND NO	WE FOUND NO	WE FOUND NO	WE FOUND A	WE FOUND NO
LINK BETHERN	LINK GETWEEN	LINK GETWEEN	LINK GETHERN	LINK GETWEEN
GREY JELLY	TAN JELLY	CYAN JELLY	GREEN JELLY	MAVE JELLY
BEANS AND AONE	GEANS AND AONE	BEANS AND AONE	BEANS AND RONE	GEARS AND ACME
(P > 0.05).	(P > 0.05).	(P > 0.05).	(P < 0.05).	(P > 0.05).
WE FOUND NO	WE FOUND NO	WE FOUND NO	WE FOUND NO	WE FOUND NO
LINK BETIVEEN	LINK GETHEEN	LINK GETHEEN	LINK BETWEEN	LINK GETWEEN
BEIGE JELLY	LIAC JELLY	BACK JELLY	PRACH JELLY	ORANGE JELLY
BEAMS AND ACNE	GENIS AND ANE	BERMS AND ANE	BEARS AND ANE	BEANS AND AVIE
(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).



A First Attempt: Bonferroni

- Let's suppose that we're conducting m tests, not just one
- Let V denote the number of false-positive errors in my m tests, and let $\{E_i=1\}$ denote the event of a false positive error on the $i ext{th}$ test
- Let's use a rejection threshold of α/m in the classical paradigm instead of α
- This controls a certain error rate...

A First Attempt: Bonferroni

$$P(V \ge 1) = P(\bigcup_{i=1}^{m} \{E_i = 1\})$$

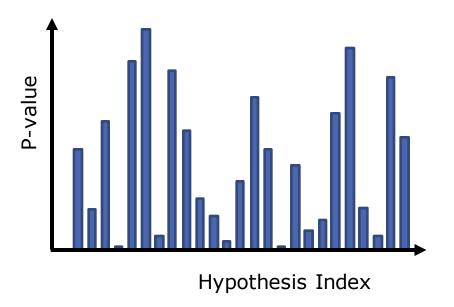
$$\le \sum_{i=1}^{m} P(\{E_i = 1\})$$

$$\le \sum_{i=1}^{m} \alpha/m$$

$$= \alpha$$

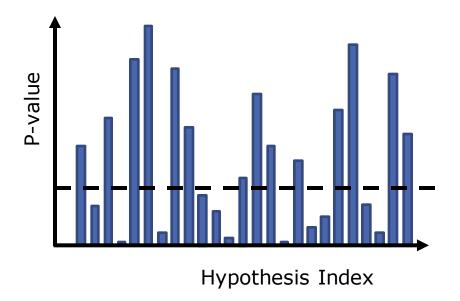
 We've controlled a quantity known as the family-wise error rate (FWER)

Example



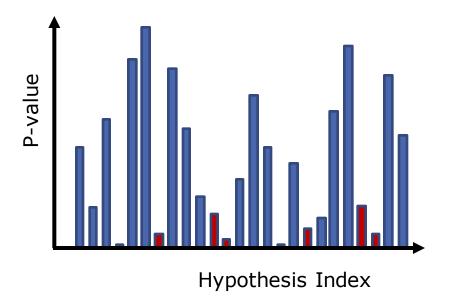
Suppose that we obtain p-values from 25 experiments

Naïve Multiple Decision-Making



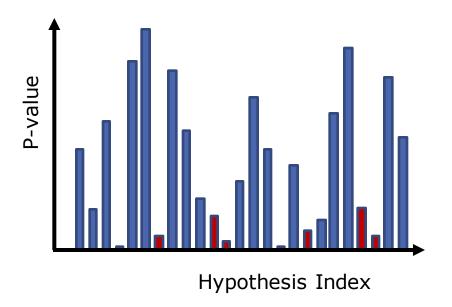
 Suppose that we simply reject each test independently if its p-value is smaller than some thresholding

Naïve Multiple Decision-Making



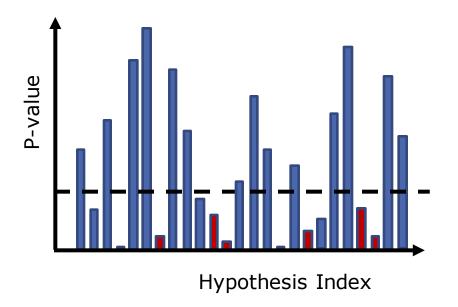
 Suppose that we simply reject each test independently if its p-value is smaller than some thresholding

Naïve Multiple Decision-Making



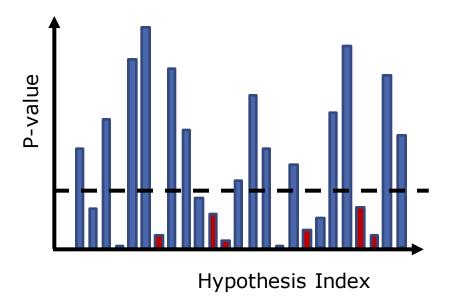
An oracle knows the truth: that the blue-shaded bars correspond to nulls (Reality = 0) and the red-shaded bars to alternatives (Reality = 1)

Naïve Multiple Decision-Making



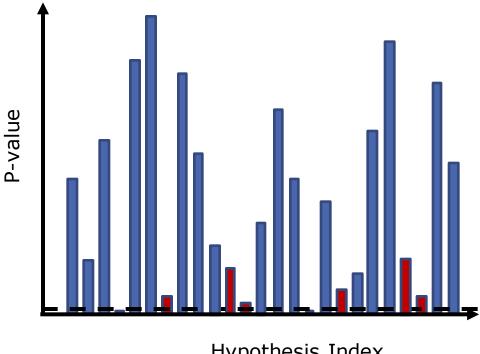
 We see that the decision-maker is avoiding false negatives, but its false discovery proportion is 4/11; pretty bad!

Naïve Multiple Decision-Making



 We see that the decision-maker is avoiding false negatives, but is making a lot of false positives, and its false discovery proportion is 4/11; pretty bad!

Bonferroni

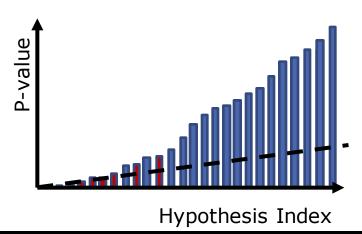


Hypothesis Index

Bonferroni avoids those false positives, but is making a lot of false negatives, and its false discovery proportion is 1/2; even worse!

Is There Something Else We Can Do?

- It's not clear that any fixed threshold will work, and it's not how to set such a threshold without knowing the truth
- We have to think out of the box: we'll be developing a
 procedure that works with sorted p-values, and compares
 them to a line with a positive slope, not a horizontal line!



Is There Something Else We Can Do?

- It's not clear that any fixed threshold will work, and it's not how to set such a threshold without knowing the truth
- We have to think out of the box: we'll be developing a procedure that works with sorted p-values, and compares them to a line with a positive slope, not a horizontal line!

$$P(H = 0 \mid D = 1) = \frac{P(H = 0, D = 1)}{P(D = 1)}$$

$$P(H = 0 | D = 1) = \frac{P(H = 0, D = 1)}{P(D = 1)}$$

$$= \frac{P(D = 1 | H = 0)P(H = 0)}{P(D = 1)}$$

$$= \frac{P(\text{Type I error}) \cdot \pi_0}{P(D = 1)}$$

• We could upper bound π_0 with 1, and so the numerator can be controlled; what about the denominator?

Using the law of total probability, we have:

$$P(D=1) = P(D=1 | H=0)P(H=0) + P(D=1 | H=1)P(H=1)$$

Using the law of total probability, we have:

$$P(D=1) = P(D=1 | H=0)P(H=0) + P(D=1 | H=1)P(H=1)$$
$$= \pi_0 P(D=1 | H=0) + (1 - \pi_0)P(D=1 | H=1)$$

so we see that P(D=1) depends on the prior π_0

Using the law of total probability, we have:

$$P(D = 1) = P(D = 1 | H = 0)P(H = 0) + P(D = 1 | H = 1)P(H = 1)$$
$$= \pi_0 P(D = 1 | H = 0) + (1 - \pi_0)P(D = 1 | H = 1)$$

so we see that P(D=1) depends on the prior π_0

- Is this a problem?
 - i.e., do we have to either decide to be Bayesian and supply the prior, or decide to be frequentist and abandon this approach?
- No! Note that it's easy to estimate P(D=1) directly from the data!

Towards an Algorithm

- We will plug in an estimate of P(D=1) into the Bayesian posterior probability
 - this is called empirical Bayesian
- And we will use the empirical Bayesian estimate to set a threshold
- Let's consider

Benjamini & Hochberg (1995) proposed an algorithm that does it

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest k such that:

$$P_{(k)} \le \frac{k}{m} \alpha$$

• Reject the null hypothesis (i.e., declare discoveries) for all hypotheses H_i such that $i \leq k$

- Benjamini & Hochberg (1995) proposed an algorithm that does it
- Given m tests, obtain p-values P_i , and sort them from smallest to largest, denoting the sorted p-values as $P_{(k)}$
 - the small ones are the safest to reject
- Now, find the largest *k* such that:

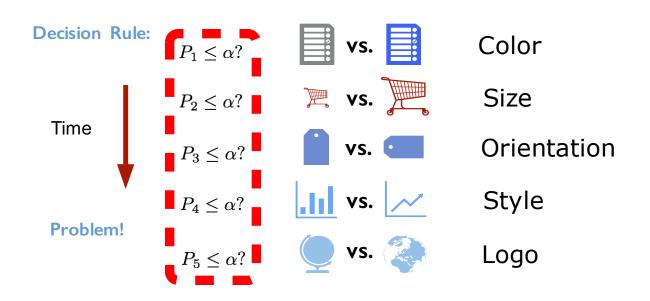
$$P_{(k)} \le \frac{k}{m} \alpha$$

- Reject the null hypothesis (i.e., declare discoveries) for all hypotheses H_i such that $i \leq k$
- This controls the FDR!

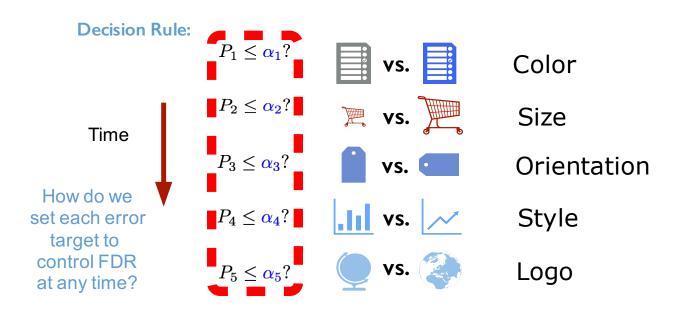
The Online Problem

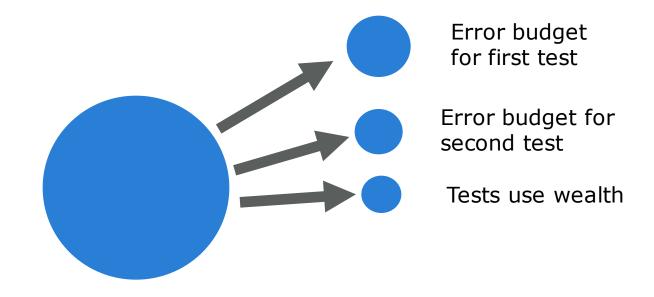
- Classical statistics, and also the Benjamini & Hochberg algorithm focused on a batch setting in which all data has already been collected
- E.g., for Benjamini & Hochberg, you need all of the p-values before you can get started
- Is is possible to consider methods that make sequences of decisions, and provide FDR control at any moment in time
- Is it conceivable that one can achieve lifetime FDR control?

Many enterprises run thousands of different (independent) A/B tests over time

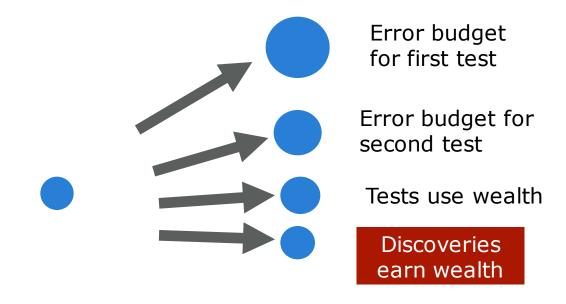


What we will do instead:

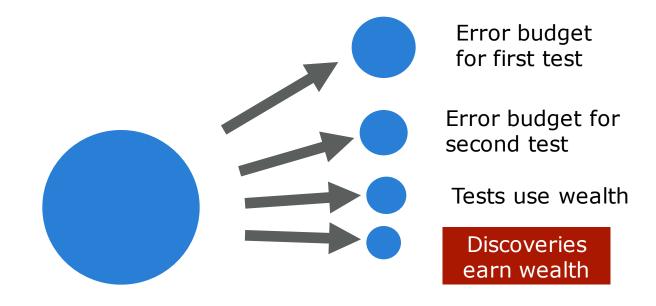




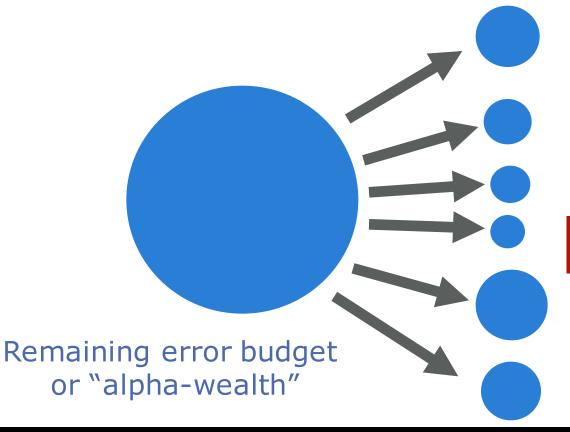
Remaining error budget or "alpha-wealth"



Remaining error budget or "alpha-wealth"



Remaining error budget or "alpha-wealth"



Error budget for first test

Error budget for second test

Tests use wealth

Discoveries earn wealth

Error budget is data-dependent

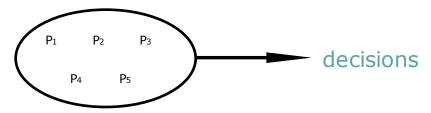
Infinite process

Online FDR control

- classical FDR literature assumes that the data for all hypotheses is collected at once, and only after all the p-values are available, one can decide which of the hypotheses should be proclaimed discoveries
- in modern testing we often do not know how many hypotheses we want to test in advance
- instead, a possibly infinite sequence of tests (i.e. p-values) arrives sequentially
- we have to make decisions *online*, with no knowledge of future tests, in a way that guarantees FDR control under a pre-specified level α at any given time
- motivating examples: A/B testing, large-scale clinical trials...

Online vs offline FDR control

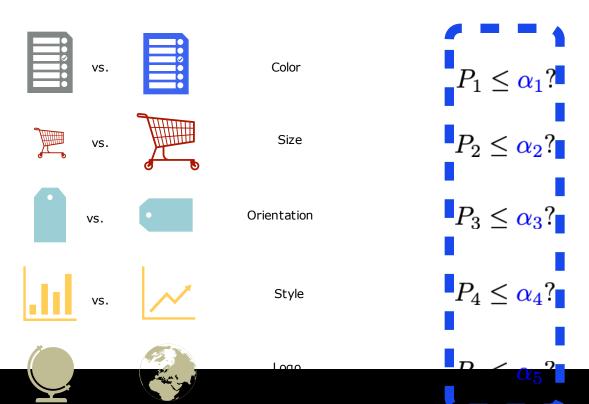
 classical FDR procedures (like BH) which make all decisions simultaneously are called "offline"



online FDR procedures make decisions one at a time

Example: A/B testing

• online FDR algorithms pick significance level α_t adaptively



Online FDR algorithm

- the first online FDR algorithm was due to Foster and Stine (2008)
- a more recent (and simpler) online FDR algorithm is due to Javanmard and Montanari, and is called LORD
- its basic idea is to assign α_t in a way that ensures $\widehat{\mathrm{FDP}}(t) := \frac{\sum_{i=1}^t \alpha_i}{\sum_{i=1}^t 1\{P_i \leq \alpha_i\}} \leq \alpha$

controls FDR:

• Why ensuring
$$\widehat{\text{FDP}}(t) := \frac{\sum_{i=1}^{t} \alpha_i}{\sum_{i=1}^{t} 1\{P_i \leq \alpha_i\}} \leq \alpha$$

$$ext{FDR} pprox rac{\mathbb{E}[\sum_{i \leq t, i ext{ null }} 1\{P_i \leq lpha_i\}]}{\mathbb{E}[\sum_{i \leq t} 1\{P_i \leq lpha_i\}]}$$
 , and we have

$$\mathbb{E}\left[\sum_{i \leq t, i \text{ null}} 1\{P_i \leq \alpha_i\}\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}\left[\mathbb{E}\left[1\{P_i \leq \alpha_i\} | \alpha_i\right]\right] = \sum_{i \leq t, i \text{ null}} \mathbb{E}\left[\mathbb{P}\left\{P_i \leq \alpha_i | \alpha_i\right\}\right]$$

$$= \sum_{i < t, i \text{ null}} \mathbb{E}\left[\alpha_i\right] \leq \mathbb{E}\left[\sum_{i < t} \alpha_i\right] \leq \alpha \mathbb{E}\left[\sum_{i < t} 1\{P_i \leq \alpha_i\}\right]$$

$$FDR < \alpha$$

Back to Inference

- Can we develop general frameworks that allow us to control column-wise quantities like the false-discovery rate (FDR)?
 - in a similar way as Neyman-Pearson controls the false-positive rate
- To be continued...