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Privacy is an issue you’ll almost certainly face in practice. Many valuable applications of data
science touch on personal data—from health data, location data, and mobile phone activity to
smart meter data.

This lecture and the next focus on how we can perform useful analysis on sensitive data in a
way that protects the privacy of individuals in the data sets. Most of this lecture will examine data
privacy attacks, while the next lecture will focus on methods to promote privacy while still allowing
for useful data analysis. Understanding common attacks is one of the best ways to mitigate them;
that said, we expect you to be responsible with the material in this lecture.

28.1 De-anonymization techniques

Many data sets must be scrubbed of personally identifiable information (PII) before release, so that,
given a data set, one cannot determine the identity of any individual in the data set. A common first
step is to anonymize data by removing “sensitive attributes.” For example, the HIPAA safe harbor
provision specifies the following as sensitive attributes for medical data: name, location, phone
number, email, IP, SSN, medical record numbers, health plan numbers, and more. All of these
must be removed from a medical data set to insure HIPAA compliance. However, just removing
all sensitive attributes from one’s data set is not sufficient to guarantee that individuals cannot be
identified.

In 1997, researcher Latanya Sweeney showed that she could de-anonymize a HIPAA-compliant
medical data set by matching it with entries in a publicly available data set of voter records. There
were three attributes in common between these data sets: zip code, date of birth, and sex. On their
own, any of these three attributes would not be enough to identify any individual. But taken to-
gether, they were enough to uniquely identify the medical records of the governor of Massachusetts.

This is an example of a linkage attack in which one links multiple data sources, some of which are
seemingly anonymized sensitive data (e.g. medical records), with a seemingly innocuous data set
(e.g. voter list). Having your name on a voter is not harmful, but when other attributes overlap
(as in the case of the governor of Massachusetts), it can be enough to link you to sensitive records
to which you did not want you name attached. Even today, many data privacy attacks come from
unforeseen data linkage attacks.

Understanding the dangers of linkage attacks gave rise to a concept called k-anonymity. This notion
distinguishes between “quasi-identifiers” (e.g. zip code, date of birth) and “sensitive attributes”
(e.g. name). A data set preserves k-anonymity if, for any setting of the quasi-identifiers and
sensitive attributes, there are at least k individuals who match this setting. In general, to achieve

28-1



Lecture 28: Randomized Response 28-2

k-anonymity one needs to modify their data set (by removing attributes or by combining them into
coarser bins). However, ensuring k-anonymity is not enough to ensure privacy, as we’ll see in the
following example.

In 2006, movie rental company Netflix released a data set of 18,000 movies and 480,000 users,
with roughly 100 million ratings of the movies by those users. Ratings were in {0, 1, .., 5}, and
the official challenge goal was to predict the missing entries (the ratings that users would give to
movies had they watched them). The movie ratings data was potentially sensitive, as the ratings
of (or the fact that one had watched) certain movies could be embarrassing. To make the data
set publicly available, Netfilx replaced user names with random numbers. The challenge ran from
2006 to 2009.

However, Netflix is not the only curator of movie ratings. The public database IMDB also collects
individuals’ ratings of movies. By posting on IMDB, users opt-in to having these ratings be publicly
available. In another linkage attack, researchers Arvind Narayanan and Vitaly Shmatikov showed
that using the publicly available IMDB ratings, they could identify some of the Netlix users, and
thus obtain their movie ratings that these users did not post publicly to IMDB.

28.2 The fundamental law of information recovery

Arvind Narayanan articulated the term “33-bits of entropy” to describe data susceptibility to linkage
attacks. Why 33? 233 ≈ 8.5 billion, more than the number of people in the world. This means,
as a rule of thumb, given any data set with > 33 bits of entropy, de-anonymization is possible in
principle. 1

As another example of linkage attacks, we’ll talk about Genome Wide Association Studies (GWAS).
In these studies, the National Institute of Health (NIH) collects data from test candidates with a
common disease, and releases minor allele frequencies (MAF) of the test population at positions in
the DNA sequence. The goal is to find the commonalities in the individuals’ DNA sequences that
are associated with certain diseases.

There was an interesting attack on this data set that is of a different flavor than the attacks we’ve
discussed so far: in 2018, Homer et al.2 showed that they could infer whether an individual was in
the published test group from a DNA sequence of the individual and the published aggregated data
in a GWAS study.

First, they compared the individual’s minor allele locations with the average of the published NIH
test population (first two rows of Table 28.1). They also compared the individual’s data to a refer-
ence population data set with MAFs sampled from a larger, more representative population, which
was also publicly available (third column of Table 28.1).

To determine if the individual was in the study or not, for each DNA location they computed
whether the individual’s MA was closer to the MAF of the test population or the reference popula-

1see https://33bits.wordpress.com/ for more.
2you can find the original paper here: https://journals.plos.org/plosgenetics/article?id=10.1371/

journal.pgen.1000167

https://33bits.wordpress.com/
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000167
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000167
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DNA loc. 1 2 3 . . . 100,000
Test Pop. MAF 0.02 0.03 0.05 . . . 0.02
Individual MA No No Yes . . . Yes

Reference Pop. MAF 0.01 0.04 0.04 . . . 0.01
Closer to? Ref Test Test . . . Test

Table 28.1: Caption

tion. They then took a majority vote over all the DNA locations to determine whether the individual
was in the GWAS data set (more MA’s were closer to test than reference population) or not. For
this data set, with n = 1, 000 and with 100, 000 DNA locations, this attack could identify with high
accuracy whether individuals where in the NIH data set or not.

Analysis of each DNA location individually gives a very weak signal, but when combined, these
weak signals produce a very strong signal. This particular example is evidence of a technical
principle common in several attacks: many weak signals combine into one strong signal. This is
encoded in the fundamental law of information recovery. It is an informal law3, that states:

“Overly accurate information about too many queries to a data source allows for partial
or full reconstruction of data (i.e. blatant non-privacy).”

Note that for any reasonable definition of privacy, full reconstruction of data will violate that defi-
nition. This type of attack is called a reconstruction attack.

The following lemma is one way to make this statement more formal, but also more precise. Many
reconstruction attacks reduce to some variant of the following signal boost lemma:

Lemma 28.1 (Signal boost lemma). Let b ∈ {−1, 1} be an unknown bit. Given access to draws from
the Bernoulli distribution, B = Bernoulli(1/2 + ε · b) (where draws are either 1 or −1, not 1 or 0),
Θ(1/ε2) samples are both necessary and sufficient to determine the bit b with high confidence.

Proof. (Sufficiency). To prove sufficiency, we will show that n = Θ(1/ε2) draws of our choice
will suffice to determine b with high confidence. Consider the following procedure: sample bits
b1, ..., bn i.i.d. from the distribution B and compute their average, b̄ = 1

n

∑
i bi. If b̄ > 0, guess b̂ = 1,

otherwise guess that b̂ = −1. The expectation of b̄ is given by

E[b̄] = E[
1

n

∑
i

bi]

= (
1

2
+ εb)1 + (

1

2
− εb)(−1)

= 2εb,

3The law is commonly used within the privacy community. See https://www.cis.upenn.edu/~aaroth/Papers/

privacybook.pdf for more.

https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
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so if we knew the expected value, we would be in good shape to predict b. A sample average will
suffice if the variance of the estimator is small. Computing the variance of b̄, we get:

Var[b̄] = E[b̄2]− E[b̄]2

=
1

n2

 n∑
i=1

n∑
j=1

E[bi · bj ]

− 4ε2b2

=
1

n2

 n∑
i=1

E[b2i ] +

n∑
i=1

∑
j 6=i

E[bi · bj ]

− 4ε2

=
1

n2

 n∑
i=1

1 +
n∑

i=1

∑
j 6=i

4ε2

− 4ε2

=
1

n2
(
n+ 4(n2 − n)ε2 − 4n2ε2

)
=

1

n
(1− 4ε2)

which for small ε is approximately 1
n , showing that for large enough samples, the sample mean will

suffice to recover b. In particular, your guess b̂ will be good with high probability if ε > c√
n

for some
constant c.

(Necessity). This direction of the proof requires material outside of the scope of DS102 Spring
2020.

28.3 Privacy Attacks

The next attack we will study is an approximate inversion attack (also known as a linear recon-
struction attack). In this setting, we have a binary vector a ∈ {−1, 1}n where each bit corresponds
to sensitive information of one of the n individuals. The attacker may query these bits by specifying
some vector w ∈ {−1, 1}n. The data curator will return 〈a,w〉 + ε, where ε is an unknown noise
term. The goal is to reconstruct the vector a using a sequence of queries w.

A natural question is, assuming some bound on ε, how many queries are needed to approximately
reconstruct a?

If ε = 0, there is no noise. In this case, picking n queries w1, ..., wn that create a matrix W with full
rank, then inverting the linear system will suffice. So we need at most n queries when there is no
noise.

The same type of strategy will work even when there is nonzero noise. Denoting our queries
w1, ..., wn as rows of an n× n matrix, the responses to those queries are given as u, where:
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u = Wa+ ε =


− w1 −
− w2 −

...
− wn −


a
+

ε


To recover a from the observed u, we can compute v = W−1u (since we have choice over W we
can always ensure that it is in invertible). However, due to the noise ε, v 6= u. Rather,

v = W−1u = W−1(Wa+ ε) = a+W−1ε

We can thus reconstruct a up to the error W−1ε. Therefore, we want to ensure that W−1ε is as
small as possible. We’ll consider the `2 norm4, and recall that

‖W−1ε‖2 ≤ ‖W−1‖2‖ε‖2.

‖W−1‖2 is the operator norm of W−1, and is equal to 1/σn(W ), where σn(W ) is the smallest
singular value of W . That is, we want to pick a W with large singular values.

It turns out that a matrix W ∈ {−1, 1}n×n with each entry randomly −1 or 1, independently of
each other, will in have σn(W ) &

√
n.

Altogether, we have

‖W−1ε‖2 ≤ ‖W−1‖2‖ε‖2 = ‖ε‖2/σn(W ) . n−1/2‖ε‖2.

Assuming ‖ε‖22 = o(n2), then

‖v − a‖22 = ‖W−1ε‖22 . o(n).

The following corollary summarizes our work in a specific setting of the errors:

Corollary 28.2. Assuming each coordinate of the perturbation ε has magnitude o(n1/2), the linear
reconstruction attack (defined above) reconstructs a up to an average coordinate error of o(1). That
is, the reconstruction is close to the true −1/1 values up to rounding error, for a large fraction of the
coordinates.

A large class of privacy attacks centers on this idea of finding noisy, but invertible linear measure-
ments of a system.

28.4 Randomized Response

Now that we’ve discussed many ways to break privacy, we will look at some methods to promote
privacy. We will cover more on this in the next lecture, as well.

4Specifically, we use the Euclidean norm on vectors, and the operator norm on matrices
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Randomized response methods came from a realization that sensitive questions elicit evasive an-
swers bias, as the responder is reluctant to reveal the truth.

Suppose b ∈ {−1, 1} is the answer to the sensitive question. The basic idea of randomized response
methods is to not ask for b directly, but rather to sample b′ from Bernoulli(1/2 + εb). The surveyor
never observes b directly, and the responder has plausible deniability that their answer was due to
the randomness in the sample of b′.

Still, each bit b′ on it’s own is not very useful. However, if n individuals report noisy bits b′i ∼
Bernoulli(1/2 + εb), we can study the average sensitive value, 1

n

∑
i bi.

Similar to our analysis of the signal boost lemma, one can show that E[ 1n
∑

i b
′
i] = 1/2 + ε 1n

∑
i bi

and var[ 1n
∑

i b
′
i] = O(1/n). Even though every bit alone is essentially useless, by averaging them

we can construct a useful statistic.

28.5 Summary

In summary, sufficiently rich information about data can always be used to re-identify individuals
in the data set. The signal boost lemma characterized the idea behind a general attack strategy:
identify many sources of mild correlation, and boost those into a large correlation. We also saw
two common attack schemes—linkage attacks and linear reconstruction attacks—as well as an early
attempt to maintain privacy while still allowing for statistical analysis of sensitive data sets.

Setting the stage for the next lecture, the signal boost lemma showed that we can’t invoke random-
ized response too many times, or else the private bit will be compromised. In fact, it’s not clear yet
how to generalize the randomization scheme to multiple analyses such that the privacy guarantee
composes well. Next time, we will see how to do this when discuss differential privacy.
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