
DS 102 Data, Inference, and Decisions Spring 2020

Lecture 27: Robustness and Distribution Shift
Lecturer: Jacob Steinhardt

Today we will discuss robustness of machine learning models. There are generally two types of
robustness that people study:

1. Robustness against adversaries that are actively attempting to attack or fool the model

2. Robustness against things changing in the world

Today, we will focus on the first type of robustness, which is particularly important for applica-
tions like face recognition and spam detection. The solutions for robustness to changes in the
world which are not adversarial—often known as distribution shift—are often similar to those for
adversarial robustness, although it is also its own active area of research.

27.1 Examples of Adversarial Attacks

Several recent examples highlight the importance of adversarial robustness.

In 2013, Syrian hackers used the Associated Press’s twitter feed falsely report “Two Explosions in
the White House and Barack Obama is injured,” leading to a $136 billion drop in the U.S. stock
market. More recently, bots influenced the U.S. and other elections by creating fake twitter accounts
to mutually retweet each other. These fake retweets affected trending topics, fooling Twitter’s
algorithms (and legitimate Twitter users) into thinking particular topics were more important.

Figure 27.1: Hackers’ fake tweet via the Associated Press temporarily caused a massive drop in the
U.S. stock market.

Adversarial robustness is a particularly relevant when we think about neural network models. Deep
learning is state-of-the-art in many domains, for instance computer vision. However, these neural
network systems, despite their success at achieving high accuracy, are incredibly fragile. For in-
stance, slightly modifying an image in an adversarial way can cause state-of-the-art deep learning

27-1

Lecture 27: Robustness and Distribution Shift 27-2

models for vision tasks to achieve essentially 0% accuracy, even when the modifications are not
perceived by humans (see Figure 27.2). Adversarial examples are persistent despite hundreds of
papers trying to avoid them.

Figure 27.2: State-of-the-art neural networks for vision applications are extremely sensitive to
adversarial attacks.

27.2 Why do Adversarial Attacks Work?

Why aren’t our models robust against these kinds of adversarial attacks? Most machine learning
systems assume that the distributions of the training data and the test data are the same (or at
least very closely related). However, there are many situations where the test data received during
deployment may be very different from the training data that was collected. Attackers can easily
violate this assumption that train ≈ test, creating vulnerabilities.

One reason that it can be so difficult to make our models robust to attacks is that simple empirical
evaluation is not sufficient to evaluate robustness. Indeed, the history of the field of adversarial
robustness is a testament to this fact. The phenomenon of adversarial images (like that in Figure
27.2) was discovered in 2014. In the following year, there were a few papers offering solutions,
including adversarial training and defensive distillation. Within a year, several papers discovered
more attacks breaking these proposed defensive solutions. There have since been hundreds of more
papers demonstrating new defenses and subsequent attacks that break these defenses—it typically
takes a few months for new papers to show how to break of bypass new defenses. This history

Lecture 27: Robustness and Distribution Shift 27-3

shows that, when it comes to adversarial robustness, one cannot simply just try stuff and see what
works—this leads to a “security arms race” that defenders often lose. Rather, new methodology is
needed to evaluate robustness.

27.3 Generating Adversarial Examples

Suppose we have a neural network that we are using to perform image classification. We can think
of the network as some function of its input x (a vector representing an image) and its parameters θ
(the weights of the network): f(x, θ). For classification, the network gives the probability p(y|x, θ)
that the image x belongs to class y. Let us denote by ŷ the model’s prediction, for instance a
classification as a “panda.” During training, we have some true label y∗ for a given image x, and
our goal is to update the parameters θ so that ŷ = y∗. Recall from Lecture 25: we update θ using
backpropogation, which means we compute ∇θ log p(y∗|x, θ) and use it to try to make log p(y∗|x, θ)
large.

When we attack a trained network, we do not get to update the model parameters. Instead, the
attacker’s goal is to update the input x to make ŷ 6= y∗. To achieve this, the attacker computes
∇x log p(y∗|x, θ) and uses it to try make log p(y∗|x, θ) small. This is the high-level idea behind
generating adversarial examples: we update the input instead of the weights, and do so to try to
make predictions wrong instead of making them right. However, we also often want to constrain
x to still be a realistic-looking image. One way to do this is to start with some real image x0 (for
example, the panda image in Figure 27.2) and constrain our new x to be close to x0 in terms of
their individual pixels:

|xj − (x0)j | ≤ ε ∀j.

Note that we can write these constraints more compactly as either

max
j
|xj − (x0)j | ≤ ε

or
‖x− x0‖∞ ≤ ε,

where the latter is called the `∞ norm.

How do we make log p(y∗|x, θ) as wrong as possible subject to the constraints |xj − (x0)j | ≤ ε? One
simple way to do this is called the Fast Gradient Sign Method (FGSM):

1. Compute the gradient g = ∇x log p(y∗|x, θ)

2. If gj < 0 set xj = (x0)j + ε

3. If gj > 0 set xj = (x0)j − ε

FGSM can be written compactly as x = x0 − εsign(g), and is nice because it can be implemented in
two lines of code and runs very quickly.

An improvement on FGSM is to iterate the process:

Lecture 27: Robustness and Distribution Shift 27-4

1. Start at x0 and pick some step size η < ε

2. For t = 1, 2, . . .:

• Compute gt−1 = ∇x log p(y∗|xt−1, θ)
• Update xt = xt−1 − ηsign(gt−1)

However, as written this algorithm has the issue that if we run for many iterations (more than ε
η

steps), our xt will eventually violate our constraints. We need to add a projection step that forces
xt to stay within our constraint set. This projection clips each coordinate j to be between (x0)j − ε
and (x0)j + ε (and typically also clips to be between 0 and 1, since this is the range of valid pixel
values). This gives us Projected Gradient Descent:

1. Start at x0 and pick some step size η < ε

2. For t = 1, 2, . . .:

• Compute gt−1 = ∇x log p(y∗|xt−1, θ)
• Update xt = clip(xt−1 − ηsign(gt−1))

Another variation of this algorithm is called the Iterative Sign Method. Iterating the gradient steps
tends to give slightly stronger attacks relative to FGSM, where here “stronger” means that the image
can be modified less while still causing predictions to be wrong.

27.4 Defending Against Adversarial Attacks

We will begin with some loose intuition for why FGSM works for generating adversarial examples.
Recall that FGSM takes x1 = x0 − εsign(g0), where g0 = ∇x log p(y∗|x0, θ). We can understand
log p(y∗|x1, θ) by looking at its Taylor expansion:

log p(y∗|x1, θ) ≈ log p(y∗|x0, θ) + 〈∇x log p(y∗|x0, θ), x1 − x0〉
= log p(y∗|x0, θ) + 〈g,−εsign(g)〉

= log p(y∗|x0, θ)− ε
∑
j

|gj |.

Roughly how big is
∑

j |gj |? When we are working in d dimensions, the sum
∑d

j=1 |gj | has d terms.
If we assume that all of the gj ’s have roughly the same magnitude (call it c), then can roughly say

log p(y∗|x1, θ) ≈ log p(y∗|x0, θ)− εcd,

which suggests we can change the model’s predictions quite a lot even if ε is very small. It turns
out that this scaling with the dimension d is not quite the right intuition, since in high dimensions
each coordinate of the gradient also gets smaller. A slightly better calculation is that |gj | ≈ c/

√
d,

so
∑

j |gj | ≈ c
√
d. This gives εc

√
d as the rough amount that FGSM can alter things. Again, this is

likely large enough to have an impact even when ε is small.

Lecture 27: Robustness and Distribution Shift 27-5

Given than FGSM and Projected Gradient Descent seem to work well, how can we defend against
attacks like these? Adversarial training is one key idea for making models robust against attacks.
Roughly speaking, adversarial training works by running the attack at train time and adding the
attacked images to the training set. For example, a common instantiation of adversarial training is:

• For each (x, y∗) in the training data:

1. Generate x′ = attack(x, y∗)

2. Update θ based on (x′, y∗)

3. Possible also update θ based on (x, y∗)

Using adversarial training can lead to models that are more robust. However, if too few gradient
steps are used in the optimizer that generates the adversarial examples, the model tends to just
learn to fool the optimizer instead of learning to be truly robust (see Figure 27.3). Since, in
adversarial training, we are explicitly training against a particular attack, if there is any easy way
for the model to fool the attack without actually learning to be robust, it will tend to do that. This
phenomenon is known as gradient masking.

Figure 27.3: Plot relating the number of gradient steps used to generate adversarial examples
to model accuracy for an example neural network on a vision task. This plot demonstrates the
gradient masking phenomenon, wherein robustness (high accuracy) is only achieved when enough
gradient steps are used.

Another way to gain intuition for this gradient masking phenomenon is to visualize the images
that maximally excite different neurons in a trained neural network model (for example, using the
library Lucid). As shown in Figure 27.4, the visualizations for the robust (adversarially-trained)
model are clearer than for the “regular” model. Indeed, the clarity of the visualized images tends to
increase as we increase the number of gradient steps in the optimizer used to generate the attacks
during adversarial training.

Lecture 27: Robustness and Distribution Shift 27-6

Figure 27.4: Images that maximally excite different neurons in normal and adversarially-trained
neural network models.

There is an important caveat to keep in mind here: so far we have discussed algorithms that only
protect against one specific type attack. Ideally, we would like our models to be robust to a lot
of different attacks. One approach is to design many different attacks ourselves, do adversarial
training against each of those attacks, and then evaluate how robust our model is to all of these
attacks. However, this is in some sense cheating, because we are implicitly assuming that we
already know the full suite of attacks against which our model needs to be robust. Something
slightly more realistic is to train against some small number of different attacks, and then test
against types of attacks that were not included at train time. This probes how robust the model
is to unforeseen attacks. There is still currently a big gap between how well models can do on
foreseen and unforeseen attacks (e.g. some approaches can do roughly half as well on unforeseen
attacks). This is an active area of research, including here at UC Berkeley.

	Examples of Adversarial Attacks
	Why do Adversarial Attacks Work?
	Generating Adversarial Examples
	Defending Against Adversarial Attacks

