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Today, we will discuss the bootstrap, a general method for estimating standard errors, confidence in-
tervals, and other measures of uncertainty. Other widespread approaches to estimating uncertainty
like chi-square or Student’s t-tests require deriving specific, algebraic formulas for each setting. In
some cases, such as the sample mean, deriving these closed-form expressions for the standard error
is not too challenging. However, in more complicated cases, we may not be able to write down a
simple formula for the uncertainty in our statistic(s) of interest. The bootstrap is a single, unified
approach for approximating these measures of uncertainty using computer simulation.

26.1 Problem Setting

We will begin by understanding the basic problem setting in which we might choose to apply the
bootstrap.

Suppose we have some dataset consisting of n elements, x1, . . . xn. We also have some statistic
or estimator θ̂ of interest which is a function of our data: θ̂ = θ̂(x1, . . . , xn). Let θ∗ denote the
true population parameter. Often, our goal is to understand how close θ̂ is to θ∗—for example, by
coming up with a confidence region S so that θ∗ ∈ S with probability 1− p.

Example 26.1. We might choose to use the bootstrap in a variety of settings, including:

• Estimating the mean of a 1D distribution. In this case, x1, . . . , xn ∈ R and θ̂(x1, . . . , xn) =
1
n(x1 + · · ·+ xn). We might ask: How close is this empirical mean to the true mean? Can we
generate good confidence intervals here?

• Linear Regression. Here, our data is (x1, y1), . . . , (xn, yn) where xi ∈ Rd and yi ∈ R. We are
interested in fitting the weights of our model, so that θ̂(x1, y1, . . . , xn, yn) = argminw

∑n
i=1(yi−

w>xi)
2. We might ask: How close is θ̂ to the true parameters or the population limit?

• Mixture models. Suppose we believe our data x1, . . . , xn comes from a mixture of Gaussians.
If we assume there are two mixture components, we might ask “how well have we estimated
both means?” Alternatively, we might try to estimate the number of mixture components
from our data—thereby seeking to answer “how many mixture components are there?”
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26.2 The Bootstrap Algorithm

In general, we think of our data x1, . . . , xn are independent samples from some population distri-
bution p∗, and think about the population parameters as the infinite sample limit:

θ∗ = lim
n→∞

θ̂(x1, . . . , xn); xi
iid∼ p∗.

Then, conceptually, we can think about the noise in our estimate θ̂) in the following way: Suppose
that in addition to computing θ̂(x1, . . . , xn) on our sample, we were provided with some indepen-
dent re-sample from p∗, x′1, . . . , x

′
n, on which we could compute θ̂(x′1, . . . , x

′
n). We could imagine

repeating this for several different re-samples, yielding a collection of different values for our esti-
mator θ̂. We can think of this collection of values as an independent sample from the distribution
over θ̂ and use it to estimate the uncertainty in the estimator θ̂ computed on n samples.

In reality, we do not actually have access to several independent re-samples from p∗, and therefore
would like some way to approximate these re-samples using our one datasets. The solution taken
by the bootstrap method is to approximate hypothetical actual re-samples by subsampling n points
with replacement from the dataset that we have. The bootstrap algorithm creates many subsampled
datasets and computes θ̂ on each, resulting in a collection of values for our estimator θ̂ that can be
used to estimate uncertainty in θ̂—for example, by computing the empirical variance.

Bootstrap

Given data x1, . . . , xn.
B = number of bootstrap samples.

For b = 1, . . . , B :

1. Sample x′1, . . . , x
′
n with replacement from x1, . . . , xn.

2. Compute θ̂(b) = θ̂(x′1, . . . , x
′
n)

Output {θ̂(1), . . . , θ̂(B)}.

Example 26.2. We can use the bootstrap algorithm to estimate the mean of a 1D geometric distri-
bution from samples. Even with only n = 15 data points, we are able to estimate the mean fairly
well based on B = 1000 bootstrap samples:
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Figure 26.1: Histogram ofB = 1000 bootstrap estimates of the mean of a 1D geometric distribution.
The red line indicates the empirical mean on the original sample of size n = 15, and the green line
indicates the true mean of the distribution.

26.3 Conditions for the Bootstrap to Work

Although the bootstrap is an extremely general approach to estimating uncertainty, we would nev-
ertheless like to understand the conditions under which it works the best.

First, note that while θ̂ does not need to be unbiased, the bootstrap works best when θ̂ is “smooth.”
For instance, bootstrap estimates for the median or for logistic regression improve more slowly with
the amount of data n than those for, say, the mean. One intuition for why this is true is that these
estimators are less “smooth” in that their values are dominated by a few points in the dataset.

In general, the bootstrap works well for most parametric estimators. Parametric means that there
is a fixed number of parameters which is small compared to the amount of data, n. Some exam-
ples of nonparametric things include decision trees, neural networks (since the number of model
parameters is usually on the same order as the data), and kernels. Nonparametric methods are
generally able to fit the data perfectly, and thus sampling with replacement ends up being approxi-
mately the same as subsampling the data without replacement which can hinder the performance of
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the bootstrap. Note that by “works well” we mean that the error in the bootstrap estimate is lower
order than the estimate itself. For example, under reasonable assumptions, the standard deviation
tends to be O(1/

√
n) and the bootstrap error on the standard deviation estimate is O(1/n). This

means that the error on the bootstrap estimate goes down faster than the estimate itself goes down,
and as n gets larger the bootstrap estimate gets better.
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