DS 102 Data, Inference, and Decisions Spring 2020

Lecture 12: Application of Bayesian Inference in Population Genetics

Lecturer: Clara Wong-Fannjiang

12.1 Recap: Bayesian Inference

In the last few weeks, we have covered several ideas from Bayesian inference.

In Bayesian inference, we have to specify a prior P() that reflects our knowledge of or beliefs about
the parameter ¢ before we collect any data. We also have to choose a model P(X|6) that reflects
what we believe about the data-generating process. The main goal is to study the posterior, P(6]|X),
which reflects our updated beliefs about 6 after we get to observe the data X.

There are two main approaches for getting P(0|X):

1. Sampling: sampling methods like Markov Chain Monte Carlo (MCMC) are nice because they
are asymptotically correct. That is, if you run them, in the limit of infinite time, eventually
the samples will be independent samples from the true posterior.

2. Variational inference: this approach, which we will see briefly at the end of this lecture, solves
an optimization problem to get at the posterior distribution in lieu of drawing samples.

Today, we will develop the Bayesian model and sampling method behind STRUCTURE, a widely-
used population genetics tool. In our derivation of STRUCTURE, we will see some practical weak-
nesses of sampling, which will motivate a high-level introduction to variational inference methods.

12.2 Application: Inferring Population Structure from Genetic Data

Suppose we have genetic data from N individuals. Can we infer which of K populations these N
individuals come from, even without knowing what each of these population looks like beforehand?

It turns out that this problem of inferring population structure from genetic data is incredibly
useful for biologists. For instance, population genetics methods are used by researchers to study
both modern and historical human migration patterns, as well by companies like 23andMe to
provide personal ancestry. They also play an incredibly important role in Genome Wide Association
Studies (GWAS), of which we saw one example in Discussion 2. In GWAS, the researcher collects
genetic data from thousands of individuals and uses that information to discover genetic marker
for particular traits. Population genetics can be used to detect population-specific bias in genetic
studies, thereby allowing the researcher to make sure her GWAS results are not biased towards a
particular population that’s represented in her data.
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12.3 Background on Genetics

locus
ACTGCATGCTCGATIGCTGCTGATCGATGCACGTAGCTT

ACTGCAAGCTCGAT|IGCACCCGATGGATGCACGAAGCTT

Figure 12.1: Diploid organisms, like humans, have two copies of the genome. A locus is a specific
location on the genome.

Our genomes consist of DNA, which is a sequence of nucleotide bases: A, C, T, and G. Humans
are diploid organisms, meaning that we have two complete copies of the genome — one inherited
from our mothers, and the other from our fathers. A locus is a specific location on the genome
(e.g. a specific base position, a specific gene, etc.). We have two copies of each locus, as illustrated
in Figure The term alleles is used to refer to all of the possible states that a locus can take
on (for example, a single base position has four alleles: A, C, T, and G), and the genotype of an
individual refers to the two specific alleles that individual has at each of L loci of interest.

12.4 An Initial Hierarchical Model for Population Genetics

Different populations of people tend to have distinctive genotypes. Based on this observation, we
would like to try to infer which of K populations N individuals come from (and something about
what those populations look like) based on the genotypes of those individuals.

How should we model the different aspects of our problem? As always, whatever model we choose
is not going to be a perfect description of reality. In general, there is an important trade-off be-
tween model tractability and expressability: a very complicated model that takes into account the
influence of many different variables will be very expressive, but also typically much harder to per-
form inference on (e.g. very slow to sample from using MCMC). One fairly simple mathematical
description for our problem is the following:

e We will model a population as a set of L vectors, each of which gives the allele frequencies of
a locus. Different populations are thus characterized by having different allele frequencies at
the L loci. More concretely, we define p;; to be the vector of allele frequencies at locus [ in
population £, and therefore py;; gives the frequency of allele j as locus [ in population k.

e To model the population of origin of the i individual, we will use a categorical variable (%),

e The i individual’s two alleles at loci [ will be represented using a pair of variables (xl(i’l), :cl(i’Q)).
The individual’s genotype consists of L such pairs giving the two alleles at each of L loci.
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To ease notation, we define

P = {prijtri;,
Z = {z0,
X = {2 )y

wherei=1,...,N,k=1,...,K,l=1,...,L,and j = 1,..., J;. Note that each locus [ might have
a different total number of possible alleles .J;.

We have defined three key quantities: P, the population allele frequencies; Z; the populations
of origin of the individuals; and X, the genotypes of the individuals. The relationships between
these variables is captured by the graphical model Figure We think of P and Z as being
independent, as they are just some facts about reality drawn from some prior. However, the ob-
served genotypes X will depend on both P and Z; this captures the intuition that if we know both
an individual’s population of origin and the allele frequencies for that population, then we have a
significant amount of information about what their genome will look like.

Figure 12.2: Our proposed hierarchical model for population genetics as a graphical model.

In order to actually perform inference, we need to specify distributions for each of these variables.
We will assume that, conditioned on the populations of origin Z and the population allele frequen-
cies P, individuals’ genotypes are randomly drawn from a multinomial distribution based on the
relevant allele frequencies:

i1 . .
xl(l )~ Multinomial(1, (p, )y, - - - Pay,))s
2 . .
a:l(Z )~ Multinomial(1, (p, ¢y - - -5 Poeiyg,)), and

P(ai"") = j|Z, P) = py;, forall j =1,..., J;.

Note that this model assumes alleles are distributed independently across different loci. A biologist
would argue that this is quite a ridiculous assumption; it is known that genes are different loci
are often correlated with one another, for instance due to the fact that we tend to inherit an
entire chromosome at a time from our parent. This correlation between loci is called “linkage
disequilibrium.” We can hope that our simple model is still good enough to be useful, despite the
fact that it does not capture linkage disequilibrium.

In Figure [12.2] Z is not being generated by any other variables, so we need only define some
prior over Z. We will assume that individuals’ populations of origin are drawn independently and
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identically according to a multinomial distribution:

A 1 1
2 ~ Multinomial (1, <K’ R K)) ,

Pz = k) = % k=1,..., K.

Again, we can see that this simple model might be inappropriate in certain situations. For example,
population sizes are not all the same, so it is unlikely that individuals will be equally likely to
come from every population. We have also assumed that individuals are independently distributed,
whereas in practice, many members of the same family, clan, etc. take part in the same study.
Many statisticians have made careers out of correcting for the effects of family structure in genetics
studies; we can nevertheless hope that this model is good enough for us to make useful inferences.

It remains to decide how to model P. Recall that each py; is a vector of allele frequencies, and
thus the entries of pg; must sum to 1. We will assume that the p;; are drawn independently and
identically from a Dirichlet distribution. The Dirichlet distribution is a generalization of the Beta
distribution to more than two categories, and specifies a distribution over probability vectors (ie.
vectors with entries that are all non-negative and sum to 1). Figure displays several examples
of Dirichlet distributions, and shows how the parameters relate to the location of the mode, skew,

and concentration of density.
1) (5,5,5)

(1,2, 3) (2,5, 10) (50, 50, 50)

AAA

Figure 12.3: Six examples of three-dimensional Dirichlet distributions, each with its parameters
given in parentheses at the top. Each triangle represents a three-dimensional probability simplex,
with each point in the triangle being a probability vector. Color is used to indicate the amount of
probability weight on each probability vector.

(0.85, 0.85, 0.85) (1,1,
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We model py; ~ Dirichlet(Aq, Ag,...,Ay) with Ay = XAy = --- = Aj;, = 1 so that the density is
uniform over all probability vectors.

12.5 Inference in our Population Model: Gibb’s Sampling

Given data X, how do we get the posterior P(P, Z|X)? We will use Gibb’s sampling, which is
well-suited to hierarchical models.

As a reminder, Gibb’s sampling typically proceeds according to the following steps:

Gibb’s Sampler for P(0|X), 6 ¢ E?

1. Initialize (9,
2. Fort=1,2,...:
0\ ~ P01 X, 00 = 08V L 0, =00y
05 ~ P01 X, 00 = 0,05 =0V, 0, =0

Hilt) ~ P01 X, 0 = 0,0, =0 .0y = ‘95—1)

The following gives the Gibb’s sampler for our model from the previous section:

Gibb’s Sampler for P(P, Z| X)

1. Initialize P(®, Z(®),

2. Fort=1,2,...:

pgtl) ~ P(p11|X, p12 = p(ltg_l), N 21 = z(l)(tfl), o)

pgt()L ~ ]P)(pKL|X’p11 = p:([t1)7 . ,Z(l) — z(l)(t—l)’ . )
L) ]P’(z(l)yX,pH _ pﬁ?, . 72,(2) _ z(2)(t71)’ )

A0~ PEM|X, pry = pl L ZND D0

P

It turns out that we can leverage the (conditional) independence structure in our model to make
our sampler more efficient by using Block Gibb’s sampling. All the py; are independent of each
other, so we can sample all the P’s at the same time rather than sequentially. Likewise, the z(*) are
independent of each other, so we can sample the Z’s together. Using Block Gibb’s sampling, we can
specify our algorithm much more simply:
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Block Gibb’s Sampler for P(P, Z|X)

1. Initialize P, Z(0),

2. Fort=1,2,...:
PO ~P(P|X,Z = 217D)
ZW ~P(Z|X,P = PW)

Our modeling decisions are also nice because Multinomial and Dirichlet are conjugate distributions.
Thus, the posterior of P is also a Dirichlet, given by

pkl’X, 7~ Dirichlet(l + N1y 1+ nk”l),
gy = HG,a) ™ =520 = kY,
and the posterior of Z is also a Multinomial, given by

P(z®|P,z0) = k)

Pz = k| X, P) =
( e w1 P(zD|P, 20) = k)

)

L
P(z?1P, 2% = k) = [ ] priatv Priacin -
1=1

12.6 Admixture and a Revised Hierarchical Model

Is it true that an individual really has just one population of origin? If not, our modeling assump-
tions on z(?) seems overly limiting.

Indeed, it usually does not make sense to think of an individual being from a single population of
origin. Admixture is when a genotype has multiple populations. We can account for admixture
by specifying the proportion of individual i’s genotype that originates in population k, denoted
q,(;). Thus, ¢(?) denotes the vector of population frequencies in the i individual’s genotype, and

Q = {d" .

In order to model admixture, we will also need to update the way we represent population of origin.
Now, population of origin will be assigned to each allele of each locus of each individual, instead

of to each individual. That is, instead of having 2(*) for each individual i, we have (zl(i’l), 21(132)) for

each allele at locus [ of individual i. Now, Z = {(zl(i’l), Zl(i72))}i7l.

The graphical model representation of our revised population genetics model is given in Fig-
ure We also need to define a prior over Q. Since ¢(¥) is a probability vector, it again makes
sense to use a Dirichlet distribution. The STRUCTURE authors chose to use ¢{*) ~ Dirichlet(c, o, .. ., @)
where « is a hyperparameter that they chose.
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Figure 12.4: Graphical model for the population genetics model which accounts for admixture.

Since all of the ()’s are independent of each other, and also of all the P’s, we can update our Block
Gibb’s sampler as follows:

How do we get P(P, @, Z| X)) Since all the @)’s are independent of each other and also independent
of all the P’s, we can update our Block Gibb’s sampler as follows:

Block Gibb’s Sampler for P(P,Q, Z|X)

1. Initialize PO, Q) z(0),

2. Fort=1,2,...:
PO.QV ~P(P,Q|X,Z = Zt1)
ZW ~P(Z|X,P=PW, Q= Q(t))

This most recent algorithm is actually exactly the STRUCTURE algorithm. One nice way to interpret
the results of using STRUCTURE is to visualize the Z’s that we sample. Figure[12.5|gives an example
of such a visualization which demonstrates that STRUCTURE picks up the fact that the genotypes
of individuals from the same ethic/geographic group are more similar to each other than to those
from different groups, even though we do not provide it with any information about where the
individuals live or what groups they are a part of.

A
Ocean i,;ne’" Ca

Africa Mid.East Europe C.S.Asia E.Asia

5832272 8 § & § s A8 $ P. & F F # F & 4 235 §. 2 & ASS35 £ nsa;
VIjig § § 28§00 87787f: FiGEE & N
FAF Y ' aalks A S Ll ¢ ¥y N A L

Figure 12.5: Example STRCUTRE output. Each vertical line represents one individual, and the
different colors represent different populations of origin. The individuals have been sorted by
ethnic/geographic groups, with groups separated by gray lines.
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STRUCTURE quickly became the gold standard in genetic and evolutionary biology for inferring
population structure from genetic data. However, after a few years, researchers’ data sets grew
larger and larger (e.g. 100,000’s of different loci), and Gibb’s sampling quickly became too compu-
tationally expensive. People often ended up having to fall back on PCA techiques, which were less
principled than STRUCTURE but the only existing techniques fast enough for larger data sets.

What can we do if we want to be Bayesian, but have large amounts of data? Is there anything we
can do that is more scalable than sampling? Variational inference, which we discuss briefly in the
next section, is one alternative to sampling for performing Bayesian inference.

12.7 An Alternative Approach: Variational Inference

Recall from our discussion of MCMC methods that sampling from the posterior can be difficult,
since Markov chains can take a long time to mix in practice, and we cannot always be sure how to
assess when they have mixed. The idea behind variational inference is that, instead of sampling,
we fit a good approximation of the posterior. While the posterior could be arbitrarily complicated
in a general statistical model, we can pick some class @) of simpler distributions that we know how
to work with, and find the best approximation of the posterior in (). Variational inference finds the
distribution ¢* in ) which is closest to the posterior in terms of some divergence metric, usually
the Kullback-Leibler divergence:

q" = argmin Dk (q(Z)||P(Z]X)).
q€Q

A few years ago, the authors of the original STRUCTURE method decided to try revamping STRUC-
TURE to use variational inference instead of Gibb’s sampling. They called it fastSTRUCTURE, and,
indeed, it is much faster than STRUCTURE while being roughly equally accurate. This population
genetics example is thus one illustration of the fact that variational inference can be a very useful
alternative approach to Bayesian inference in practice.
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Figure 12.6: A comparison of the runtime of STRUCTURE (sampling-based), fastSTRUCTURE (vari-
ational inference), and PCA which also shows how computation time increases with problem size.
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