
DS 102 Data, Inference, and Decisions Spring 2020

Lecture 11: Approximate Inference via Sampling II
Lecturer: Jacob Steinhardt

11.1 Review and Motivation

Last lecture, we covered two different sampling methods. First, we saw rejection sampling, which
works by sampling from one distribution q that envelopes the target distribution p (i.e. p(x) ≤
C · q(x) for some constant C), and then accepting or rejecting those samples with probability based
on the ratio p(x)

C·q(x) . Next, we discussed a related algorithm called importance sampling, which

accepts every sample x, but assigns each sample a weight p(x)
q(x) .

Today, we’ll discuss a family of methods called Markov Chain Monte Carlo (MCMC) algorithms. As
we shall see, instead of trying to sample directly from the target distribution p, MCMC methods set
up a Markov chain that converges to p.

11.2 Markov Chains

We begin by reviewing the idea of a Markov chain.

A sequence x1, . . . , xT where the distribution of xt depends only on xt−1 is called a Markov chain.
A Markov chain is always defined by a transition distribution A(xnew|xold), together with an initial
state x1. (Note that, in general, there are situations where the transition distribution might also
depend on the current time step t, but for the purposes of this course that will never be the case.)

Example 11.1. We saw one example of a Markov chain in Example 9.1, where we used an Hidden
Markov Model (HMM) to model a population of fish in a pond evolving over time. We posited
that the only thing that affect the population of fish at time t is the population at time t − 1 and
randomness induced by birth and death processes.

Example 11.2. A random walk is one example of a Markov chain that is used, for instance, in
Google’s PageRank algorithm. Starting with some webpage x1, we randomly follow a link on that
page. Thus, the transition distribution is defined by picking a random link on the current webpage
to get to a new webpage. xt is the current webpage afer t steps of (randomly) following links. In
this case, the Markov chain gives us a measure of importance for each webpage, since we can look
at how frequently each webpage is visited. Intuitively, important webpages should be visited more
frequently by this random walk since they will have a lot of incoming links.

Example 11.3. The process defined by x1 = 0, xt | xt−1 ∼ N(0.9xt−1, 1) is a Markov chain. Here,
there is randomness (defined by the Gaussian distribution) which will push xt away from the origin,

11-1



Lecture 11: Approximate Inference via Sampling II 11-2

but also a scaling-down (from the factor of 0.9) which will tend to keep xt from straying too far
away.

While Markov chains can be used to model data (as in the above examples), in this lecture we will
focus on using them to create algorithms. Our understanding of such algorithms will require the
following two key concepts.

The first concept is that of the stationary distribution. All “nice enough” Markov chains have
the property that if T is large enough, the distribution over xT is “almost independent” of x1, and
converges to some distribution p̄(x) as T → ∞. p̄(x) is called the stationary distribution. (The
technical condition for “nice enough” is that the Markov chain is ergodic, and this result is known
as the ergodic theorem.) One way to think about the stationary distribution is as the proportion of
time xt spends in each state as T →∞.

The second important concept is that of mixing time. The mixing time of a Markov chain captures
how long it takes for xT to be close to the stationary distribution. We will not define this formally
in this course, but the following examples provide some intuition.

Example 11.4. Suppose we have a deck of cards that starts in some initial configuration x1. Our
transition distribution is defined by performing a riffle shuffle. Here, the mixing time is the number
of times we need to shuffle the deck for the deck to be “almost random.” There is actually a paper
by probabilists Dave Bayer and Persi Diaconis showing that the answer for a 52 card deck is that
we need to perform about 7 shuffles.

Example 11.5. Suppose our Markov chain is defined by a random walk on a complete graph with
n vertices (including self-loops). That is, every vertex is connected to itself and every other vertex,
and at each step we choose an edge to follow uniformly at random. The stationary distribution will
be uniform over the vertices. It turns out that the mixing time in this case is just 1 step, since a
single step selects a new vertex uniformly at random.

Example 11.6. Suppose our Markov chain is defined by a random walk on a path of length n.
Specifically, when xt−1 is an internal node, xt is either the node to the left or to the right of the
current node with equal probability. When xt−1 is the leftmost node of the path, xt is the node to its
right with probability 1. Similarly, when xt−1 is the path’s rightmost node, xt is the node to its left.
Here, the stationary distribution will assign more probability weight on the internal nodes than the
edge nodes. The mixing time must be at least n, since the random walk could not possible make it
from one end of the path to the other in less than n steps. In fact, it turns out that the mixing time
is roughly n2, since the random walk will tend to go back and forth many times before making it
from one end to the other.

11.3 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a tar-
get probability distribution by constructing a Markov chain. MCMC approaches take a sequential
approach to sampling, where previous samples impact your current sample.

In general, MCMC algorithms take the following iterative form:

https://statweb.stanford.edu/~cgates/PERSI/papers/bayer92.pdf


Lecture 11: Approximate Inference via Sampling II 11-3

1. generate some seed sample x1, and set xold = x1.

2. repeat:

(a) use previous sample xold to generate a new sample xnew

The ‘Monte Carlo’ part of MCMC comes from the repeated sampling aspect; the ’Markov Chain’ is
because the samples form a Markov chain. In general, we aim to choose the transition distribution
so that this Markov chain has the target distribution p as its stationary distribution. in the following
sections, we will define two specific MCMC algorithms that accomplish this: Gibb’s sampling and
Metropolis-Hastings.

11.3.1 Gibb’s sampling

We begin with a motivating example. Suppose we have an arbitrary distribution p(x1, . . . , xn) from
which we want to sample. We could try doing rejection sampling using some proposal distribution
q(x1, . . . , xn) for all the xi at once. However, rejection sampling will tend to be much too slow
– typically, the acceptance rate will be exponentially small in n. For example, even if the xi are
independent and q(xi)

p(xi)
≤ 1.1, we need 1.1n tries (which is approximately 2.4 · 1041 for n = 1000)

before making an acceptance. In general, rejection sampling suffers from a “curse of dimensional-
ity.” Importance sampling can help address this issue somewhat, but unfortunately we can still run
into problems where the majority of the samples are assigned exponentially small weights.

Gibb’s sampling is used for sampling from such multivariate distributions, and does so by sampling
one coordinate of the multidimensional random variable at a time. When we sample only one xi
at a time, we will no longer by sampling directly from p, but if we keep doing so iteratively, this
process will define a Markov chain with the right stationary distribution.

The general flow of Gibb’s sampling is to fix all but one of the random variables, and sample the
remaining one according to its conditional distribution with everything else fixed. We can outline
this algorithm as follows:

• Initialize (x1, . . . , xn) arbitrarily.
Repeat:

– Pick i (randomly or sequentially)

– Re-sample xi from p(xi | x1, . . . , xi−1, xi+1, . . . , xn)

Example 11.7. Hierarchical Bayesian models are an example where Gibb’s sampling is often par-
ticularly effective. For instance, think back to the Gaussian mixture model (GMM) from previ-
ous lectures, where the total probability of a sample is given by the prior on the parameters
P(µ1, µ2, π1, π2), and well as the observed values x and the hidden variables z. The total probability
of any sample is given by: P(µ)P(z)p(x | z, µ). Sampling from this entire distribution seems like a
lot of work, but we’ve seen in previous lectures and discussions that any single parameter or distri-
bution can be solved for in closed-form in this model. For example, P(µ1 |µ2, z1, . . . , zn, x1, . . . , xn).
That is, it’s often it’s easier to sample one variable at a time.



Lecture 11: Approximate Inference via Sampling II 11-4

Gibb’s sampling is incredibly widely used because it is so simple. This simplicity comes about
because, generally, when we look at the distribution of one variable at a time (keeping all other
variables fixed), this univariate density is much easier to sample from than the full multivariate
distribution. Moreover, Gibb’s sampling is very flexibly; unlike EM, for example, we do not need to
“get lucky” with the graphical model structure for the updates to be efficient.

However, one important drawback to MCMC methods, including Gibb’s sampling, is that we have
to worry about mixing time. Practically, we often to run the chain for a large number of steps
(called “burn-in”) before we can begin collecting samples. In general, it can take many iterations
before Markov chains start to mix. Even then, we often only sample once every Tsample-freq steps in
the chain. A more formal version of the Gibb’s sampling algorithm which accounts for the burn-in
period and sampling frequency is given below.

Gibb’s Sampling

1. Specify an initial sample x = (x1, x2, . . . , xn).

2. For t = 1, 2, . . . , Tburn-in:

(a) For i = 1, . . . d:

• Sample x′i from p(xi|x1, ...xi−1, xi+1, . . . xn).
• Set xi ← x′i

3. For t = Tburn-in + 1, Tburn-in + 2, ..., Tburn-in +K · Tsample-freq:

(a) For i = 1, . . . d:

• Sample x′i from p(xi|x1, ...xi−1, xi+1, . . . xn).
• Set xi ← x′i

(b) If t− Tburn-in is a multiple of Tsample-freq, append x to the sample.

How does Gibb’s sampling compare to other algorithms we have seen in the course so far, like
EM? Since we can never know for certain that we have run our Markov chain long enough to
deal with mixing time, EM can be more reliable. However, EM is only guaranteed to converge to
a local optimum; we can never be sure that it converges to a global optimum. In general, each
approach has its own tade-offs, so which approach we choose should always be based on what we
know about our specific application, and which concerns (e.g. time until convergence, mixing time,
getting stuck in local optima) we are most worried about for our current problem. We will discuss
many of these trade-offs in more detail in the context of a real example from computational biology
in the next lecture.

11.3.2 Metropolis-Hastings

The Gibb’s sampling algorithm was based on just one possible Markov chain that has the desired
stationary distribution. Is there a more general strategy? It turns out that, by marrying the ideas
of MCMC and rejection sampling, we can combine any proposed Markov chain q(xnew|xold) with



Lecture 11: Approximate Inference via Sampling II 11-5

an accept/reject step to create a new Markov chain with the correct stationary distribution. This
approach is known as Metropolis-Hastings.

Metropolis-Hastings uses a proposal distribution q(xnew|xold) for generating the next candidate
draw from the most recent one. The algorithm is as follows (to generate a total of K samples):

Metropolis-Hastings

1. For t = 1, 2, . . . , Tburn-in:

(a) Generate a proposal xnew from proposal distribution q(xnew|xold).

(b) Calculate the importance weight α = min
(

1, p(x
new)·q(xold |xnew)

p(xold)·q(xnew |xold)

)
(c) With probability α, set xold ← xnew.

2. For t = Tburn-in + 1, Tburn-in + 2, ..., Tburn-in +K · Tsample-freq:

(a) Generate a proposal xnew from proposal distribution q(xnew|xold).

(b) Calculate the importance weight α = min
(

1, p(x
new)·q(xold |xnew)

p(xold)·q(xnew |xold)

)
(c) With probability α, set xold ← xnew.

(d) If t− Tburn-in is a multiple of Tsample-freq, append xold to the sample.

Note that steps (c) in the algorithm above look like a rejection sampling step, with acceptance
probability α. Let’s take a closer look at the form for α:

α(xold, xnew) = min

(
1,
p(xnew) · q(xold |xnew)

p(xold) · q(xnew |xold)

)
.

The acceptance probability is higher for candidates xnew which are more likely under p(·). We
also down-weight candidates that were very likely to see according to the proposal distribution q
by dividing by q(xnew |xold). Finally, taking the minimum with 1 ensures that α is always a valid
probability.

While these are nice properties for the acceptance probability, we ultimately choose this exact form
for α so that the stationary distribution of the resulting Markov chain is exactly p(x). It is also
interesting to note that Gibb’s sampling is a special case where q is such that we always accept the
proposals.

As in our discussion of Gibb’s sampling, we may be concerned about mixing time. It might seem
that the burn-in rate and sample frequency will disastrously increase overall sampling time. In
practice, this is generally not the case; if we can pick a good proposal distribution q(xnew|xold). In
general, we’ll pick a simple proposal distribution which is easy to sample from, and for which the
density is easy and fast to compute.


	Review and Motivation
	Markov Chains
	Markov Chain Monte Carlo (MCMC)
	Gibb's sampling
	Metropolis-Hastings


