
Data 102: Lecture 4
Moritz Hardt

UC Berkeley, Spring 2020



Part of the slide deck courtesy of Michael Jordan



Announcements

We’re moving. Seriously! Check Piazza before coming to class



Last time



Statistical decision-making framework

Data X

Parameter θ

Decision rule δ(X)

Bayesian setting: Prior P(θ) over parameters, joint distribution P(θ, X)

Frequentist setting: Likelihood P(X | θ)



Neyman-Pearson formulation (1932)

Constrained optimization:

Maximize true positive rate of δ

s.t. false positive rate ≤ 𝛼 (e.g. 0.05)

Tuesday: Neyman-Pearson lemma. Optimal solution is Likelihood Ratio Test



Today: Multiple hypothesis testing









The reproducibility crisis

The Economist. October 2013.



Distribution of published p-values

Source:
A peculiar prevalence of p values just below .05
Masicampo, Lalande
https://journals.sagepub.com/doi/10.1080/17470218.2012.711335

https://journals.sagepub.com/doi/10.1080/17470218.2012.711335


The reproducibility crisis

Source: Nature News, 2016.
https://www.nature.com/news/1-500-scientists
-lift-the-lid-on-reproducibility-1.19970

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970


The reproducibility crisis

Source: Nature News, 2016.
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

There are many causes. We 
won’t touch on all of them in this 
class.

Primarily our focus.



Should we do hypothesis testing at all?

As a result of the replication crisis, hypothesis testing has often been the 
scapegoat.

But we saw there are many problems that co-occurred with hypothesis testing

We’ll argue that hypothesis testing can still be a useful tool up your sleeve, if you 
understand it well and use it carefully.



Recap: Hypothesis tests as decision making

Hypothesis H

Reality: Null hypothesis is true (θ = 0), null hypothesis is false (θ = 1)

Decision: Accept null hypothesis (δ(X) = 0), Reject null hypothesis (δ(X) = 1)

Interpret “δ(X) = 1” as declaring a “discovery”

Hence, false positive = false discovery. 



What we’ll focus on today
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False discovery proportion in hypothesis testing

Run 10,000 
different,

independent
hypothesis 

tests

9,900 true
nulls

100 
non-nulls

FPR = Pr(reject | null) = 0.05

495 false 
discoveries

80 true 
discoveries

false discovery
proportion = 
495/575

TPR = Pr(reject | non-null) = 0.80



Recap P-values

Consider a null hypothesis (θ = 0) with distribution P0(X) under the null hypothesis. 
(This is a shorthand for the likelihood of X under the null.)

Test statistic T(X) with tail cdf F(t) = P0(T > t) 

P-value is defined as the random variable F(T)

Generic test: δ(X) = REJECT if F(T) < 𝛼 and ACCEPT otherwise.



P-values

Data distribution P0(X) under the null hypothesis. 
Test statistic T(X) with cdf F(t) = P0(T > t) , p-value is P = F(T)
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P-values

Data distribution P0(X) under the null hypothesis. 
Test statistic T(X) with cdf F(t) = P0(T > t) , p-value is P = F(T)

Fact: p-value is uniformly distributed under the null.

Proof:

P0(P < p) = P0(F(T) < p) = P0(T > F-1(p)) = F(F-1(p)) = p 
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Shaded area 
is the p-value.
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Hypothesis Index

Suppose we run 25 independent experiments and record their p-values.



P-
va

lu
e

Hypothesis Index

Say we reject all null hypotheses below cutoff.

Cutoff 𝛼,
E.g. 0.05 
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Hypothesis Index

Suppose highlighted hypotheses are non-nulls (Reality = 1), 
and blue ones are the true nulls (Reality = 0)

Cutoff 𝛼,
E.g. 0.05 

non-null
null
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Hypothesis Index

Our fixed cutoff rejects all 6 non-nulls, but it also rejects 5 nulls.

Cutoff 𝛼,
E.g. 0.05 

non-null
null
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Hypothesis Index

Our false discovery proportion is 5/11. Not so great! 

Cutoff 𝛼,
E.g. 0.05 

non-null
null



Can we avoid false positives?

Old idea: Bonferroni correction, a.k.a. union 
bound.

Suppose we make m tests. Let V be the 
number of false positives across all tests. Let 
Ei denote the event of a false positive in the 
i-th test. These are random variables.

So, we can apply the union bound to P(V > 0)

P(V > 0) ≤ ∑i P(Ei)

If each test has FPR ≤ 𝛼’  

P(V > 0) ≤ m 𝛼’ 

To get P(V > 0) ≤ 𝛼,
we need  𝛼’ ≤ 𝛼/m.



Bonferroni correction

If you make m hypothesis tests, reject each hypothesis if p-value < 𝛼/m

This bounds probability of a single false positive across all tests by  𝛼.

Statisticians call this controlling the family-wise error.

“Controlling” means you have an a priori guarantee.



P-
va

lu
e

Hypothesis Index

Bonferroni: Divide cutoff by 25 (number of hypotheses).

Cutoff 𝛼/m

non-null
null
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Hypothesis Index

Now we reject 1 non-null, reject 2 nulls.
False discovery proportion is now ⅔. Even worse!

Cutoff 𝛼/m

non-null
null
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Hypothesis Index

Bonferroni avoid false positives at the expense of more false negatives!

Cutoff 𝛼/m

non-null
null



Observation

If we want to make any discoveries at all, we cannot guarantee that false 
discovery proportion is always less than any fixed value strictly less than 1. 

Why?

P-values are uniform under the null. There’s some tiny probability that all nulls will 
have tiny p-value.



False discovery rate control

Let V be the number of falsely rejected nulls (“false discoveries”).

Let R be the number of all rejected hypotheses (“discoveries”).

Note that FDP = V/R. Let’s put FDP = 0, if R=0.

Statisticians focus on tests that guarantee E[FDP] = E[V/R] ≤ 𝛼.

This expectation E[V/R] is called false discovery rate in the research community.



False discovery rate control

Let V be the number of falsely rejected nulls (“false discoveries”).
Let R be the number of all rejected hypotheses (“discoveries”).
Note that FDP = V/R. Convention: FDP = 0, if R = 0.
FDR = E[FDP] = E[V/R]

There are two ways to make FDR small:

Make V small, or make R large

Safe discoveries should make us more risk tolerant!



Later cutoffs more relaxed banking on earlier discoveries!
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Cutoff depends on index

Sorted p-values



Benjamini Hochberg

1. Given m tests, obtain m p-values 
2. Sort them as P1 ≤ P2 ≤ … ≤ Pm
3. Find the largest k s.t. Pk ≤ (k/m)𝛼
4. Reject null hypothesis for all i ≤ k

Hypothesis Index
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(k/m)𝛼
Chosen k in 
step 4

Theorem: This procedure 
controls FDR at level 𝛼, i.e., 
E[V/R] ≤ 𝛼. 



A Bayesian derivation of the BH procedure

Suppose we’re in the Bayesian setting: We have a joint distribution P over θ (state 
of reality, i.e., null vs non-null) and data X.

We think of FDP as estimating the probability P(null | reject) = P(θ = 0 | δ(X) = 1)

Suppose now our goal is to ensure P(θ = 0 | δ(X) = 1) ≤ 𝛼

This is not equivalent to FDR control. This is a Bayesian perspective.

We will see that this perspective naturally recovers the BH procedure.



A Bayesian derivation of the BH procedure

Suppose now our goal is to ensure P(θ = 0 | δ(X) = 1) ≤ 𝛼

Apply Bayes rule:

P(θ = 0 | δ(X) = 1) = P( δ(X) = 1 | θ = 0 ) ( P(θ=0) / P(δ(X) = 1) )

Note: 
P( δ(X) = 1 | θ = 0 ) = FPR (false positive rate)
P(θ=0) ≤ 1 (and in fact, not a bad bound if non-nulls are rare)
P(δ(X) = 1) ≤ k/m (by design of BH procedure)



A Bayesian derivation of the BH procedure

Suppose now our goal is to ensure P(θ = 0 | δ(X) = 1) ≤ 𝛼

Bayes rule: P(θ = 0 | δ(X) = 1) = P( δ(X) = 1 | θ = 0 ) ( P(θ=0) / P(δ(X) = 1) )

Note: P( δ(X) = 1 | θ = 0 ) = FPR (false positive rate)
P(θ=0) ≤ 1 (and in fact, not a bad bound if non-nulls are rare)
P(δ(X) = 1) ≤ k/m (by design of BH procedure)

So, P(θ = 0 | δ(X) = 1) ≤ FPR / (k/m)

But what is FPR?



A Bayesian derivation of the BH procedure

We have: P(θ = 0 | δ(X) = 1) ≤ FPR/(k/m)

But what is FPR? 

By design, FPR = Pk i.e. the cutoff we choose in BH

Hence, P(θ = 0 | δ(X) = 1) ≤ Pk / (k/m)

We can ensure P(θ = 0 | δ(X) = 1) ≤ 𝛼  by making sure Pk / (k/m) ≤ 𝛼

Equivalently, Pk  ≤ (k/m)𝛼

To be least conservative, pick the largest such k. This is exactly what BH does.



The online problem



The online problem

● Classical statistics, and also the Benjamini & Hochberg algorithm focused on 
a batch setting in which all data has already been collected

● E.g., for Benjamini & Hochberg, you need all of the p-values before you can get 
started

● Is is possible to consider methods that make sequences of decisions, and 
provide FDR control at any moment in time?
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Decision Rule:

A common industry problem: Repeated A/B testing
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FDR control 
at each time 

step

Decision Rule:

What you can do instead



Online FDR control : high-level picture

Remaining error budget 
or “alpha-wealth”

Error budget 
for first test

Error budget for 
second test

Tests use wealth
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Online FDR control : high-level picture

Remaining error budget 
or “alpha-wealth”

Error budget 
for first test

Error budget for 
second test

Tests use wealth

Discoveries 
earn wealth

Error budget
is data-dependent

Infinite process



Online FDR control

● classical FDR literature assumes that the data for all hypotheses is collected at 
once, and only after all the p-values are available, one can decide which of the 
hypotheses should be proclaimed discoveries

● in modern testing we often do not know how many hypotheses we want to test 
in advance

● instead, a possibly infinite sequence of tests (i.e. p-values) arrives sequentially

● we have to make decisions online, with no knowledge of future tests, in a way 
that guarantees FDR control under a pre-specified level      at any given time

● motivating examples: A/B testing, large-scale clinical trials…



Online FDR control is possible

The first online FDR algorithm was due to Foster and Stine (2008)

A more recent (and simpler) online FDR algorithm is due to Javanmard and 
Montanari, and is called LORD.

We might to a homework problem on this.



Some issues and limitations



Major caveat in everything we saw

All hypotheses are independent

More formally precise statement: All p-values always have to be uniform under the 
null, regardless of other hypotheses.

This can be relaxed slightly (negative dependence etc.).



Thought experiment

Suppose you get your data.

You start playing around with it, clean it a bit, select 
some reasonable variables, throw out some others.

Now you do a single hypothesis test.

You get a p-value of 0.001. Is it legit? Do you need a 
correction? If so, what?



What we saw can be a major problem.

Computing p-values after data-dependent choices generally breaks the 
assumptions of your p-value (distribution not uniform under null).

This was recognized by David Freedman (UC Berkeley) and is known as 
Freedman’s paradox

Now widely recognized and studied as inference after selection (in statistics), 
adaptive data analysis (in computer science).

Inference after selection and adaptivity



How do we cope?

The easiest way is to collect new data from the same distribution and run 
hypothesis test on fresh data.

This is safe, but wasteful in terms of sample splitting.

Better approaches are often very sophisticated and not yet very practical.



Beware of “implicit comparisons”

A researcher has lots of degrees of freedoms that lead to implicit comparisons 
favoring one analysis over the other.

These implicit comparisons often happen without being recorded or recognized.

Increasingly, researchers turn to pre-registration: Specify your entire experimental 
setup ahead of time and commit to it before data collection. Run the setup as 
specified once you have the data. Report outcome no matter what.



Recall from earlier:



That’s it for today.


