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Announcements

We're moving. Seriously! Check Piazza before coming to class




Last time



Statistical decision-making framework

Data X

Parameter 0

Decision rule 6(X)

Bayesian setting: Prior P(8) over parameters, joint distribution P(6, X)

Frequentist setting: Likelihood P(X | ©)



Neyman-Pearson formulation (1932)

Constrained optimization:
Maximize true positive rate of 6

s.t. false positive rate < « (e.g. 0.05)

Tuesday: Neyman-Pearson lemma. Optimal solution is Likelihood Ratio Test



Today: Multiple hypothesis testing
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The reproducibility crisis

. Washington's lawyer surplus
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The Economist. October 2013.

Why Most Published Research Findings Are False

John P. A. loannidis

Published: August 30, 2005 ® https://doi.org/10.1371/journal.pmed.0020124
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We're All'P-Hacking' Now

An insiders' term for scientific malpractice has worked its way into pop culture. Is that a good thing?
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The reproducibility crisis

IS THERE A REPRODUCIBILITY CRISIS?
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NATURE | NEWS FEATURE
1,500 scientists lift the lid on reproducibility
Survey sheds light on the ‘crisis’ rocking research.

Monya Baker

25 May 2016 | Corrected: 28 July 2016

Source: Nature News, 2016.
https://www.nature.com/news/1-500-scientists

-lift-the-lid-on-reproducibility-1.19970
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WHAT FACTORS CONTRIBUTE TO
IRREPRODUCIBLE RESEARCH?

Many top-rated factors relate to intense competition

The reproducibility crisis
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Should we do hypothesis testing at all?

As a result of the replication crisis, hypothesis testing has often been the
scapegoat.

But we saw there are many problems that co-occurred with hypothesis testing

We'll argue that hypothesis testing can still be a useful tool up your sleeve, if you
understand it well and use it carefully.



Recap: Hypothesis tests as decision making

Hypothesis H

Reality: Null hypothesis is true (6 = 0), null hypothesis is false (6 = 1)
Decision: Accept null hypothesis (6(X) = 0), Reject null hypothesis (6(X) = 1)
Interpret “6(X) = 1" as declaring a “discovery”

Hence, false positive = false discovery.



What we’ll focus on today
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False discovery proportion in hypothesis testing

FPR = Pr(reject | null) = 0.05

Run 10,000 9 900 true 495 false
different, - nulls discoveries false discovery

proportion =

independent
hypothesis 100 80 true 495/575
tests non-nulls dlscoverles

TPR = Pr(reject | non-null) = 0.80



Recap P-values

Consider a null hypothesis (6 = 0) with distribution P,(X) under the null hypothesis.
(This is a shorthand for the likelihood of X under the null.)

Test statistic T(X) with tail cdf F(t) = P (T > t)
P-value is defined as the random variable F(T)

Generic test: 6(X) = REJECT if F(T) < « and ACCEPT otherwise.



P-values

Data distribution P(X) under the null hypothesis.
Test statistic T(X) with cdf F(t) = P(T > t), p-value is P = F(T)
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Shaded area
is the p-value.

P-values

density of T under null

S

Data distribution P(X) under the null hypothesis. -
- . . Observed value T
Test statistic T(X) with cdf F(t) = P(T > t), p-value is P = F(T)

Fact: p-value is uniformly distributed under the null.

Proof:

Po(P < p) = Py(F(T) < p) = P(T>F'(p)) = F(F'(p)) = p



P-value

Hypothesis Index

Suppose we run 25 independent experiments and record their p-values.



P-value

Cutoff ¢,
E.g. 0.05

Hypothesis Index

Say we reject all null hypotheses below cutoff.



P-value

Cutoff ¢,
E.g. 0.05

Hypothesis Index

Suppose highlighted hypotheses are non-nulls (Reality = 1),
and blue ones are the true nulls (Reality = 0)



P-value

Cutoff ¢,
E.g. 0.05

Hypothesis Index

Our fixed cutoff rejects all 6 non-nulls, but it also rejects 5 nulls.



P-value

Cutoff ¢,
E.g. 0.05

Hypothesis Index

Our false discovery proportion is 5/11. Not so great!



Can we avoid false positives?

Old idea: Bonferroni correction, a.k.a. union
bound.

Suppose we make m tests. Let V be the
number of false positives across all tests. Let
E. denote the event of a false positive in the
i-th test. These are random variables.

So, we can apply the union bound to P(V > 0)

P(V>0)=< 2. P(EI.)
If each test has FPR < &'
P(V>0)sma’

To get P(V>0) = ¢,
we need o' < a/m.



Bonferroni correction

If you make m hypothesis tests, reject each hypothesis if p-value < a/m
This bounds probability of a single false positive across all tests by «.
Statisticians call this controlling the family-wise error.

“Controlling” means you have an a priori guarantee.



P-value

_. Cutoff /M

Hypothesis Index

Bonferroni: Divide cutoff by 25 (number of hypotheses).



P-value

_. Cutoff /M

Hypothesis Index

Now we reject 1 non-null, reject 2 nulls.
False discovery proportion is now %. Even worse!



P-value

_. Cutoff /M

Hypothesis Index

Bonferroni avoid false positives at the expense of more false negatives!



Observation

If we want to make any discoveries at all, we cannot guarantee that false
discovery proportion is always less than any fixed value strictly less than 1.

Why?

P-values are uniform under the null. There's some tiny probability that all nulls will
have tiny p-value.



False discovery rate control

Let V be the number of falsely rejected nulls (“false discoveries”).
Let R be the number of all rejected hypotheses (“discoveries”).
Note that FDP = V/R. Let’s put FDP = 0, if R=0.

Statisticians focus on tests that guarantee E[FDP] = E[V/R] = «.

This expectation E[V/R] is called false discovery rate in the research community.



False discovery rate control

Let V be the number of falsely rejected nulls (“false discoveries”).
Let R be the number of all rejected hypotheses (“discoveries”).
Note that FDP = V/R. Convention: FDP =0, if R = 0.

FDR = E[FDP] = E[V/R]

There are two ways to make FDR small:
Make V small, or make R large

Safe discoveries should make us more risk tolerant!



Sorted p-values

= Cutoff depends on index

P-value

Hypothesis Index

Later cutoffs more relaxed banking on earlier discoveries!



A
Benjamini Hochberg

step 4

. (k/m)a

P-value

Given m tests, obtain m p-values
SortthemasP, <P,<..<sP_ Hypothesis Index
Find the largest k s.t. P, < (k/m)a
Reject null hypothesis for all i < k

o~

Theorem: This procedure
controls FDR at level ¢, i.e.,
E[V/R] < a.



A Bayesian derivation of the BH procedure

Suppose we're in the Bayesian setting: We have a joint distribution P over 6 (state
of reality, i.e., null vs non-null) and data X.

We think of FDP as estimating the probability P(null | reject) = P(6 =0 6(X) = 1)
Suppose now our goal isto ensure P(6=0|6(X) =1) = «
This is not equivalent to FDR control. This is a Bayesian perspective.

We will see that this perspective naturally recovers the BH procedure.



A Bayesian derivation of the BH procedure

Suppose now our goal isto ensure P(6=0|6(X) =1) = «
Apply Bayes rule:
PO=016(X)=1)=P(6(X)=116=0) (P(6=0)/P(d(X)=1))

Note:
P(6(X)=1|6=0) =FPR (false positive rate)
P(6=0) < 1 (and in fact, not a bad bound if non-nulls are rare)
P(6(X) = 1) < k/m (by design of BH procedure)



A Bayesian derivation of the BH procedure

Suppose now our goal isto ensure P(6=0|6(X) =1) = «
Bayesrule: P(6=0[8(X)=1)=P(6(X)=116=0) (P(6=0)/P(6(X)=1))

Note: P(6(X)=1]6=0)=FPR (false positive rate)
P(6=0) < 1 (and in fact, not a bad bound if non-nulls are rare)
P(6(X) = 1) < k/m (by design of BH procedure)

So,P(6=0]8(X)=1)<FPR/ (k/m)

But what is FPR?



A Bayesian derivation of the BH procedure

We have: P(6 = 0| 6(X) = 1) < FPR/(k/m)

But what is FPR?

By design, FPR =P, i.e. the cutoff we choose in BH

Hence, P(6=0]8(X) =1) <P,/ (k/m)

We can ensure P(6 = 0| 6(X) = 1) = « by making sure P,/ (k/m) < «
Equivalently, P, < (k/m)a

To be least conservative, pick the largest such k. This is exactly what BH does.



The online problem



The online problem

e Classical statistics, and also the Benjamini & Hochberg algorithm focused on
a batch setting in which all data has already been collected

e E.g, for Benjamini & Hochberg, you need all of the p-values before you can get
started

e Isis possible to consider methods that make sequences of decisions, and
provide FDR control at any moment in time?



A common industry problem: Repeated A/B testing
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What you can do instead

Decision Rule:  oumm m
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Online FDR control : high-level picture

o=

Remaining error budget
or “alpha-wealth”

Error budget
for first test

Error budget for
second test

Tests use wealth



Online FDR control : high-level picture
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Online FDR control : high-level picture

Error budget
for first test

Error budget for
second test
Tests use wealth
Dlscovenes
n ' earn wealth

Error budget
Remalnlng error budget is data-dependent

or “alpha-wealth”

Infinite process



Online FDR control

e classical FDR literature assumes that the data for all hypotheses is collected at
once, and only after all the p-values are available, one can decide which of the
hypotheses should be proclaimed discoveries

e in modern testing we often do not know how many hypotheses we want to test
in advance

e instead, a possibly infinite sequence of tests (i.e. p-values) arrives sequentially

e we have to make decisions online, with no knowledge of future tests, in a way
that guarantees FDR control under a pre-specified level  at any given time

e motivating examples: A/B testing, large-scale clinical trials...



Online FDR control is possible

The first online FDR algorithm was due to Foster and Stine (2008)

A more recent (and simpler) online FDR algorithm is due to Javanmard and
Montanari, and is called LORD.

We might to a homework problem on this.



Some issues and limitations



Major caveat in everything we saw

All hypotheses are independent

More formally precise statement: All p-values always have to be uniform under the
null, regardless of other hypotheses.

This can be relaxed slightly (negative dependence etc.).



Thought experiment

Suppose you get your data.

You start playing around with it, clean it a bit, select
some reasonable variables, throw out some others.

Now you do a single hypothesis test.

You get a p-value of 0.001. Is it legit? Do you need a
correction? If so, what?




Inference after selection and adaptivity

What we saw can be a major problem.

Computing p-values after data-dependent choices generally breaks the
assumptions of your p-value (distribution not uniform under null).

This was recognized by David Freedman (UC Berkeley) and is known as
Freedman'’s paradox

Now widely recognized and studied as inference after selection (in statistics),
adaptive data analysis (in computer science).



How do we cope?

The easiest way is to collect new data from the same distribution and run
hypothesis test on fresh data.

This is safe, but wasteful in terms of sample splitting.

Better approaches are often very sophisticated and not yet very practical.



Beware of “implicit comparisons”

A researcher has lots of degrees of freedoms that lead to implicit comparisons
favoring one analysis over the other.

These implicit comparisons often happen without being recorded or recognized.

Increasingly, researchers turn to pre-registration: Specify your entire experimental
setup ahead of time and commit to it before data collection. Run the setup as
specified once you have the data. Report outcome no matter what.
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NEWS - 24 OCTOBER 2018

First analysis of ‘pre-registered’ studies
shows sharprise in null findings

Logging hypotheses and protocols before performing research seems to work as
intended: to reduce publication bias for positive results.

Matthew Warren




That’s it for today.



