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Bots influenced U.S., other elections [Marwick & Lewis ’17]

• presidential debates, #MacronLeaks

• affect trending topics
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ML: Powerful But Fragile

ML is state-of-the-art in many domains, such as vision:
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Machine Learning is Insecure

[Szegedy et al. ’14]
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Machine Learning is Insecure

[Szegedy et al. ’14]

Self-driving cars:

stop → yield

[Evtimov et al. ’17]

Speech recognition:

noise → “Ok Google”

[Carlini et al. ’16]

Malware:

malware → benign

[Grosse et al. ’16]
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ML Paradigm is Broken

Most ML systems assume:

train (data collection) ≈ test (deployment)

train
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ML Paradigm is Broken

Most ML systems assume:

train (data collection) ≈ test (deployment)

train

test

attack

Attackers can easily violate assumption, create vulnerabilities!
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Arms Races

Empirical evaluation against attacks insufficient:

discovery
[Szegedy et al. ’14]
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Arms Races

Empirical evaluation against attacks insufficient:

discovery
[Szegedy et al. ’14]

adversarial training
[Goodfellow et al. ’15]

defensive distillation
[Papernot et al. ’15]

iterative attacks
[Carlini & Wagner ’16]

transfer attacks
[Papernot et al. ’17]

· · · (100+ papers)

bypassing 10 defenses
[Carlini & Wagner ’17]
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Take-away

Can’t just “see what works”–
leads to a security arms race
that defenders often lose!
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Take-away

Can’t just “see what works”–
leads to a security arms race
that defenders often lose!

Need new methodology to evaluate robustness.
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Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them
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Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

stop → yield
[Evtimov et al. ’17]

turtle → rifle
[Athalye et al. ’17]

banana → toaster
[Brown et al. ’17]

Most defenses fail within weeks (arms race), but a few have lasted.

What makes them different?
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Details of the robust model

Obtained via adversarial training (train on adversarial images)

Generate training images via gradient ascent on cross-entropy loss

If too few gradient steps, model learns to fool optimizer instead of
being truly robust
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Accuracy vs. gradient steps
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Tool: Visualization (Lucid)
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Visualizing Neural Networks

Visualization: find images that maximally excite different neurons.
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Visualizing Neural Networks

Visualization: find images that maximally excite different neurons.

Normal Robust
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Other non-robust model:
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Regular network (zoomed in)
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Robust network (zoomed in)
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Neurons vs. gradient steps

0:
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Neurons vs. gradient steps
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Neurons vs. gradient steps

30:
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