
Causality

Our starting point is the difference between an observation and an
action. What we see in passive observation is how individuals follow
their routine behavior, habits, and natural inclination. Passive ob-
servation reflects the state of the world projected to a set of features
we chose to highlight. Data that we collect from passive observation
show a snapshot of our world as it is.

There are many questions we can answer from passive observation
alone: Do 16 year-old drivers have a higher incidence rate of traffic
accidents than 18 year-old drivers? Formally, the answer corresponds
to a difference of conditional probabilities assuming we model the
population as a distribution as we did in the last chapter. We can cal-
culate the conditional probability of a traffic accident given that the
driver’s age is 16 years and subtract from it the conditional proba-
bility of a traffic accident given the age is 18 years. Both conditional
probabilities can be estimated from a large enough sample drawn
from the distribution, assuming that there are both 16 year old and
18 year old drivers. The answer to the question we asked is solidly in
the realm of observational statistics.

But important questions often are not observational in nature.
Would traffic fatalities decrease if we raised the legal driving age
by two years? Although the question seems similar on the surface,
we quickly realize that it asks for a fundamentally different insight.
Rather than asking for the frequency of an event in our manifested
world, this question asks for the effect of a hypothetical action.

As a result, the answer is not so simple. Even if older drivers have
a lower incidence rate of traffic accidents, this might simply be a
consequence of additional driving experience. There is no obvious
reason why an 18 year old with two months on the road would be
any less likely to be involved in an accident than, say, a 16 year-old
with the same experience. We can try to address this problem by
holding the number of months of driving experience fixed, while
comparing individuals of different ages. But we quickly run into
subtleties. What if 18 year-olds with two months of driving experi-
ence correspond to individuals who are exceptionally cautious and
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hence—by their natural inclination—not only drive less, but also
more cautiously? What if such individuals predominantly live in re-
gions where traffic conditions differ significantly from those in areas
where people feel a greater need to drive at a younger age?

We can think of numerous other strategies to answer the original
question of whether raising the legal driving age reduces traffic acci-
dents. We could compare countries with different legal driving ages,
say, the United States and Germany. But again, these countries differ
in many other possibly relevant ways, such as, the legal drinking age.

At the outset, causal reasoning is a conceptual and technical
framework for addressing questions about the effect of hypotheti-
cal actions or interventions. Once we understand what the effect of an
action is, we can turn the question around and ask what action plau-
sibly caused an event. This gives us a formal language to talk about
cause and effect.

Not every question about cause is equally easy to address. Some
questions are overly broad, such as, “What is the cause of success?”
Other questions are too specific: “What caused your interest in 19th
century German philosophy?” Neither question might have a clear
answer. Causal inference gives us a formal language to ask these
questions, in principle, but it does not make it easy to choose the
right questions. Nor does it trivialize the task of finding and inter-
preting the answer to a question. Especially in the context of fairness,
the difficulty is often in deciding what the question is that causal
inference is the answer to.

The limitations of observation

Before we develop any new formalism, it is important to understand
why we need it in the first place.

To see why we turn to the venerable example of graduate admis-
sions at the University of California, Berkeley in 1973.1 Historical 1 Peter J Bickel et al., “Sex Bias in

Graduate Admissions: Data from
Berkeley,” Science 187, no. 4175 (1975):
398–404.

data show that 12763 applicants were considered for admission to
one of 101 departments and inter-departmental majors. Of the 4321

women who applied roughly 35 percent were admitted, while 44 per-
cent of the 8442 men who applied were admitted. Standard statistical
significance tests suggest hat the observed difference would be highly
unlikely to be the outcome of sample fluctuation if there were no
difference in underlying acceptance rates.

A similar pattern exists if we look at the aggregate admission
decisions of the six largest departments. The acceptance rate across
all six departments for men is about 44%, while it is only roughly
30% for women, again, a significant difference. Recognizing that
departments have autonomy over who to admit, we can look at the
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gender bias of each department.2 2 Source (Note: There is some discrep-
ancy with a Wikipedia page. Retrieved:
Dec 27, 2018.)Table 1: UC Berkeley admissions data from 1973.

Men Women

Department Applied Admitted (%) Applied Admitted (%)
A 825 62 108 82
B 520 60 25 68
C 325 37 593 34

D 417 33 375 35
E 191 28 393 24

F 373 6 341 7

What we can see from the table is that four of the six largest de-
partments show a higher acceptance ratio among women, while two
show a higher acceptance rate for men. However, these two depart-
ments cannot account for the large difference in acceptance rates that
we observed in aggregate. So, it appears that the higher acceptance
rate for men that we observed in aggregate seems to have reversed at
the department level.

Such reversals are sometimes called Simpson’s paradox3, even 3 For clarifications regarding the popu-
lar interpretation of Simpson’s original
article Edward H Simpson, “The Inter-
pretation of Interaction in Contingency
Tables,” Journal of the Royal Statisti-
cal Society: Series B (Methodological)
13, no. 2 (1951): 238–41, see Miguel
A Hernán, David Clayton, and Niels
Keiding, “The Simpson’s paradox un-
raveled,” International Journal of Epidemi-
ology 40, no. 3 (March 2011): 780–85,
https://doi.org/10.1093/ije/dyr041.
and Judea Pearl, Causality (Cambridge
University Press, 2009).

though mathematically they are no surprise. It’s a fact of conditional
probability that there can be events Y (here, acceptance), A (here, fe-
male gender taken to be a binary variable) and a random variable Z
(here, department choice) such that:

1. P{Y | A} < P{Y | ¬A}
2. P{Y | A, Z = z} > P{Y | ¬A, Z = z} for all values z that the

random variable Z assumes.

Simpson’s paradox nonetheless causes discomfort to some, be-
cause intuition suggests that a trend which holds for all subpopula-
tions should also hold at the population level.

The reason why Simpson’s paradox is relevant to our discussion
is that it’s a consequence of how we tend to misinterpret what in-
formation conditional probabilities encode. Recall that a statement
of conditional probability corresponds to passive observation. What
we see here is a snapshot of the normal behavior of women and men
applying to graduate school at UC Berkeley in 1973.

What is evident from the data is that gender influences depart-
ment choice. Women and men appear to have different preferences
for different fields of study. Moreover, different departments have
different admission criteria. Some have lower acceptance rates, some
higher. Therefore, one explanation for the data we see is that women

http://www.randomservices.org/random/data/Berkeley.html
https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://doi.org/10.1093/ije/dyr041
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chose to apply to more competitive departments, hence getting re-
jected at a higher rate than men.

Indeed, this is the conclusion the original study drew:

The bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole,
but apparently from prior screening at earlier levels of the educational system.
Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects.4 4 Bickel et al., “Sex Bias in Graduate

Admissions.”

In other words, the article concluded that the source of gender bias
in admissions was a pipeline problem: Without any wrongdoing by
the departments, women were “shunted by their socialization” that
happened at an earlier stage in their lives.

It is difficult to debate this conclusion on the basis of the avail-
able data alone. The question of discrimination, however, is far from
resolved.5 We can ask why women applied to more competitive 5 The example has been heavily dis-

cussed in various other writings, such
as Pearl’s recent discussion Judea Pearl
and Dana Mackenzie, The Book of Why:
The New Science of Cause and Effect (Basic
Books, 2018). However, the develop-
ment throughout this chapter will
differ significantly in its arguments and
conclusions.

departments in the first place. There are several possible reasons.
Perhaps less competitive departments, such as engineering schools,
were unwelcoming of women at the time. This may have been a gen-
eral pattern at the time or specific to the university. Perhaps some
departments had a track record of poor treatment of women that
was known to the applicants. Perhaps the department advertised the
program in a manner that discouraged women from applying.

The data we have also shows no measurement of qualification of an
applicant. It’s possible that due to self-selection women applying to
engineering schools in 1973 were over-qualified relative to their peers.
In this case, an equal acceptance rate between men and women might
actually be a sign of discrimination.

There is no way of knowing what was the case from the data we
have. We see that at best the original analysis leads to a number of
follow-up questions.

At this point, we have two choices. One is to design a new study
and collect more data in a manner that might lead to a more conclu-
sive outcome. The other is to argue over which scenario is more
likely based on our beliefs and plausible assumptions about the
world.

Causal inference is helpful in either case. On the one hand, it can
be used as a guide in the design of new studies. It can help us choose
which variables to include, which to exclude, and which to hold
constant. On the other hand, causal models can serve as a mechanism
to incorporate scientific domain knowledge and exchange plausible
assumptions for plausible conclusions.
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Causal models

We choose structural causal models as the basis of our formal discus-
sion as they have the advantage of giving a sound foundation for
various causal notions we will encounter. The easiest way to con-
ceptualize a structural causal model is as a program for generating
a distribution from independent noise variables through a sequence
of formal instructions. Let’s unpack this statement. Imagine instead
of samples from a distribution, somebody gave you a step-by-step
computer program to generate samples on your own starting from a
random seed. The process is not unlike how you would write code.
You start from a simple random seed and build up increasingly more
complex constructs. That is basically what a structural causal model
is, except that each assignment uses the language of mathematics
rather than any concrete programming syntax.

A first example

Let’s start with a toy example not intended to capture the real world.
Imagine a hypothetical population in which an individual exercises
regularly with probability 1/2. With probability 1/3, the individual
has a latent disposition to develop overweight that manifests in the
absence of regular exercise. Similarly, in the absence of exercise,
heart disease occurs with probability 1/3. Denote by X the indicator
variable of regular exercise, by W that of excessive weight, and by H
the indicator of heart disease. Below is a structural causal model to
generate samples from this hypothetical population.

1. Sample independent Bernoulli6 random variables, i.e., biased coin 6 A Bernoulli random variable B(p)
with bias p is a biased coin toss that
assumes value 1 with probability p and
value 0 with probability 1− p.

flips: U1 ∼ B(1/2), U2 ∼ B(1/3), U3 ∼ B(1/3).
2. X := U1

3. W := if X = 1 then 0 else U2

4. H := if X = 1 then 0 else U3

Contrast this generative description of the population with a usual
random sample drawn from the population that might look like this:

X W H

0 1 1

1 0 0

1 1 1

1 1 0

0 1 0

. . . . . . . . .
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From the program description, we can immediately see that in
our hypothetical population exercise averts both overweight and heart
disease, but in the absence of exercise the two are independent. At
the outset, our program generates a joint distribution over the ran-
dom variables (X, W, H). We can calculate probabilities under this
distribution. For example, the probability of heart disease under the
distribution specified by our model is 1/2 · 1/3 = 1/6. We can also
calculate the conditional probability of heart diseases given over-
weight. From the event W = 1 we can infer that the individual does
not exercise so that the probability of heart disease given overweight
increases to 1/3 compared with the baseline of 1/6.

Does this mean that overweight causes heart disease in our model?
The answer is no as is intuitive given the program to generate the
distribution. But let’s see how we would go about arguing this point
formally. Having a program to generate a distribution is substantially
more powerful than just having sampling access. One reason is that
we can manipulate the program in whichever way we want, assum-
ing we still end up with a valid program. We could, for example, set
W := 1, resulting in a new distribution. The resulting program looks
like this:

2. X := U1

3. W := 1
4. H := if X = 1 then 0 else U3

This new program specifies a new distribution. We can again
calculate the probability of heart disease under this new distribution.
We still get 1/6. This simple calculation reveals a significant insight.
The substitution W := 1 does not correspond to a conditioning on
W = 1. One is an action, albeit inconsequential in this case. The
other is an observation from which we can draw inferences. If we
observe that an individual is overweight, we can infer that they have
a higher risk of heart disease (in our toy example). However, this
does not mean that lowering body weight would avoid heart disease.
It wouldn’t in our example. The active substitution W := 1 in contrast
creates a new hypothetical population in which all individuals are
overweight with all that it entails in our model.

Let us belabor this point a bit more by considering another hypo-
thetical population, specified by the equations:

2. W := U2

3. X := if W = 0 then 0 else U1

4. H := if X = 1 then 0 else U3

In this population exercise habits are driven by body weight. Over-
weight individuals choose to exercise with some probability, but
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that’s the only reason anyone would exercise. Heart disease develops
in the absence of exercise. The substitution W := 1 in this model
leads to an increased probability of exercise, hence lowering the prob-
ability of heart disease. In this case, the conditioning on W = 1 has
the same affect. Both lead to a probability of 1/6.

What we see is that fixing a variable by substitution may or may
not correspond to a conditional probability. This is a formal render-
ing of our earlier point that observation isn’t action. A substitution
corresponds to an action we perform. By substituting a value we
break the natural course of action our model captures. This is the
reason why the substitution operation is sometimes called the do-
operator, written as do(W := 1).

Structural causal models give us a formal calculus to reason about
the effect of hypothetical actions. We will see how this creates a for-
mal basis for all the different causal notions that we will encounter in
this chapter.

Structural causal models, more formally

Formally, a structural causal model is a sequence of assignments
for generating a joint distribution starting from independent noise
variables. By executing the sequence of assignments we incremen-
tally build a set of jointly distributed random variables. A structural
causal model therefore not only provides a joint distribution, but also
a description of how the joint distribution can be generated from el-
ementary noise variables. The formal definition is a bit cumbersome
compared with the intuitive notion.

Definition 1. A structural causal model M is given by a set of variables
X1, ..., Xd and corresponding assignments of the form

Xi := fi(Pi, Ui), i = 1, ..., d .

Here, Pi ⊆ {X1, ..., Xd} is a subset of the variables that we call the
parents of Xi. The random variables U1, ..., Ud are called noise variables,
which we require to be jointly independent.

The directed graph corresponding to the model has one node for each
variable Xi, which has incoming edges from all the parents Pi. We will
call such a graph the causal graph corresponding to the structural causal
model.

Let’s walk through the formal concepts introduced in this defini-
tion in a bit more detail.

The noise variables that appear in the definition model exogenous
factors that influence the system. Consider, for example, how the
weather influences the delay on a traffic route you choose. Due to
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the difficulty of modeling the influence of weather more precisely, we
could take the weather induced to delay to be an exogenous factor
that enters the model as a noise variable. The choice of exogenous
variables and their distribution can have important consequences for
what conclusions we draw from a model.

The parent nodes Pi of node i in a structural causal model are of-
ten called the direct causes of Xi. Similarly, we call Xi the direct effect
of its direct causes Pi. Recall our hypothetical population in which
weight gain was determined by lack of exercise via the assignment
W := min{U1, 1 − X}. Here we would say that exercise (or lack
thereof) is a direct cause of weight gain.

Structural causal model are a collection of formal assumptions
about how certain variables interact. Each assignment specifies a
response function. We can think of nodes as receiving messages from
their parents and acting according to these messages as well as the
influence of an exogenous noise variable.

To which extent a structural causal model conforms to reality is a
separate and difficult question that we will return to in more detail
later. For now, think of a structural causal model as formalizing and
exposing a set of assumptions about a data generating process. As
such different models can expose different hypothetical scenarios
and serve as a basis for discussion. When we make statements about
cause and effect in reference to a model, we don’t mean to suggest
that these relationship necessarily hold in the real world. Whether
they do depends on the scope, purpose, and validity of our model,
which may be difficult to substantiate.

It’s not hard to show that a structural causal model defines a
unique joint distribution over the variables (X1, ..., Xd) such that
Xi = fi(Pi, Ui). It’s convenient to introduce a notion for probabilities
under this distribution. When M denotes a structural causal model,
we will write the probability of an event E under the entailed joint
distribution as PM{E}. To gain familiarity with the notation, let M
denote the structural causal model for the hypothetical population in
which both weight gain and heart disease are directly caused by an
absence of exercise. We calculated earlier that the probability of heart
disease in this model is PM{H} = 1/6.

In what follows we will derive from this single definition of a
structural causal model all the different notions and terminology that
we’ll need in this chapter.

Throughout, we restrict our attention to acyclic assignments. Many
real-world systems are naturally described as stateful dynamical sys-
tem with feedback loops. At the end of the chapter, we discuss some
of the options for dealing with such closed loop systems. For exam-
ple, often cycles can be broken up by introducing time dependent
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variables, such as, investments at time 0 grow the economy at time 1
which in turn grows investments at time 2, continuing so forth until
some chosen time horizon t.

Causal graphs

We saw how structural causal models naturally give rise to causal
graphs that represent the assignment structure of the model graphi-
cally. We can go the other way as well by simply looking at directed
graphs as placeholders for an unspecified structural causal model
which has the assignment structure given by the graph. Causal
graphs are often called causal diagrams. We’ll use these terms inter-
changeably.

Below we see causal graphs for the two hypothetical populations
from our heart disease example.

Figure 1: Causal diagrams for the heart
disease examples.

The scenarios differ in the direction of the link between exercise
and weight gain.

Causal graphs are convenient when the exact assignments in a
structural causal models are of secondary importance, but what
matters are the paths present and absent in the graph. Graphs also let
us import the established language of graph theory to discuss causal
notions. We can say, for example, that an indirect cause of a node is
any ancestor of the node in a given causal graph. In particular, causal
graphs allow us to distinguish cause and effect based on whether a
node is an ancestor or descendant of another node.

Let’s take a first glimpse at a few important graph structures.

Forks

A fork is a node Z in a graph that has outgoing edges to two other
variables X and Y. Put differently, the node Z is a common cause of
X and Y.

Figure 2: Example of a fork.

We already saw an example of a fork in our weight and exercise
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example: W ← X → H. Here, exercise X influences both weight
and heart disease. We also learned from the example that Z has a
confounding effect: Ignoring exercise X, we saw that W and H appear
to be positively correlated. However, the correlation is a mere result
of confounding. Once we hold exercise levels constant (via the do-
operation), weight has no effect on heart disease in our example.

Confounding leads to a disagreement between the calculus of
conditional probabilities (observation) and do-interventions (actions).

Real-world examples of confounding are a common threat to the
validity of conclusions drawn from data. For example, in a well
known medical study a suspected beneficial effect of hormone re-
placement therapy in reducing cardiovascular disease disappeared after
identifying socioeconomic status as a confounding variable.7 7 Linda L. Humphrey, Benjamin K.

S. Chan, and Harold C. Sox, “Post-
menopausal Hormone Replacement
Therapy and the Primary Prevention
of Cardiovascular Disease,” Annals of
Internal Medicine 137, no. 4 (August
2002): 273–84.

Mediators

The case of a fork is quite different from the situation where Z lies on
a directed path from X to Y:

Figure 3: Example of a chain.

In this case, the path X → Z → Y contributes to the total effect
of X on Y. It’s a causal path and thus one of the ways in which X
causally influences Y. That’s why Z is not a confounder. We call Z a
mediator instead.

We saw a plausible example of a mediator in our UC Berkeley
admissions example. In one plausible causal graph, department
choice mediates the influences of gender on the admissions decision.

The notion of a mediator is particularly relevant to the topic of
discrimination analysis and we will return to this discussion in more
detail again.

Colliders

Finally, let’s consider another common situation: the case of a collider.

Figure 4: Example of a collider.

Colliders aren’t confounders. In fact, in the above graph, X and
Y are unconfounded, meaning that we can replace do-statements
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by conditional probabilities. However, something interesting hap-
pens when we condition on a collider. The conditioning step can
create correlation between X and Y, a phenomenon called explaining
away. A good example of the explaining away effect, or collider bias,
is due to Berkson. Two independent diseases can become negatively
correlated when analyzing hospitalized patients. The reason is that
when either disease (X or Y) is sufficient for admission to the hospi-
tal (indicated by variable Z), observing that a patient has one disease
makes the other statistically less likely.8 8 See the Wikipedia article and the

reprint of Berkson’s original article,
Joseph Berkson, “Limitations of the
Application of Fourfold Table Analysis
to Hospital Data,” International Journal
of Epidemiology 43, no. 2 (2014): 511–15.

Berkson’s law is a cautionary tale for statistical analysis when
we’re studying a cohort that has been subjected to a selection rule.
For example, there’s an ongoing debate about the effectiveness of
GRE scores in higher education. Recent studies9 argue that GRE

9 Abigail M. AND Petrie Moneta-
Koehler Liane AND Brown, “The Limi-
tations of the Gre in Predicting Success
in Biomedical Graduate School,” PLOS
ONE 12, no. 1 (January 2017): 1–17;
Anna B. AND Cook Hall Joshua D.
AND O’Connell, “Predictors of Student
Productivity in Biomedical Graduate
School Applications,” PLOS ONE 12,
no. 1 (January 2017): 1–14.

scores are not predictive of various success outcomes in a graduate
student population. However, care must be taken when studying the
effectiveness of educational tests, such as the GRE, by examining a
sample of admitted students. After all, students were in part admit-
ted on the basis of the test score. It’s the selection rule that introduces
the potential for collider bias.

Interventions and causal effects

Structural causal models give us a way to formalize the effect of
hypothetical actions or interventions on the population within the
assumptions of our model. As we saw earlier all we needed was the
ability to do substitutions.

Substitutions and the do-operator

Given a structural causal model M we can take any assignment of the
form

X := f (P, U)

and replace it by another assignment. The most common substitu-
tion is to assign X a constant value x:

X := x

We will denote the resulting model by M′ = M[X := x] to indicate
the surgery we performed on the original model M. Under this as-
signment we hold X constant by removing the influence of its parent
nodes and thereby any other variables in the model.

Graphically, the operation corresponds to eliminating all incoming
edges to the node X. The children of X in the graph now receive a
fixed message x from X when they query the node’s value.

https://en.wikipedia.org/wiki/Berkson%27s_paradox
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Figure 5: Graph before and after substi-
tution.

The assignment operator is also called the do-operator to empha-
size that it corresponds to performing an action or intervention. We
already have notation to compute probabilities after applying the
do-operator, namely, PM[X:=x](E).

Another notation is popular and common:

P{E | do(X := x)} = PM[X:=x](E)

This notation analogizes the do-operation with the usual notation
for conditional probabilities, and is often convenient when doing cal-
culations involving the do-operator. Keep in mind, however, that the
do-operator (action) is fundamentally different from the conditioning
operator (observation).

Causal effects

The causal effect of an action X := x on a variable Y refers to the
distribution of the variable Y in the model M[X := x]. When we
speak of the causal effect of a variable X on another variable Y we
refer to all the ways in which setting X to any possible value x affects
the distribution of Y.

Often we think of X as a binary treatment variable and are inter-
ested in a quantity such as

EM[X:=1][Y]−EM[X:=0][Y] .

This quantity is called the average treatment effect. It tells us how
much treatment (action X := 1) increases the expectation of Y relative
to no treatment (action X := 0).

Causal effects are population quantities. They refer to effects aver-
aged over the whole population. Often the effect of treatment varies
greatly from one individual or group of individuals to another. Such
treatment effects are called heterogeneous.

Confounding

Important questions in causality relate to when we can rewrite a do-
operation in terms of conditional probabilities. When this is possible,
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we can estimate the effect of the do-operation from conventional
conditional probabilities that we can estimate from data.

The simplest question of this kind asks when a causal effect
P{Y = y | do(X := x)} coincides with the condition probability
P{Y = y | X = x}. In general, this is not true. After all, the difference
between observation (conditional probability) and action (interven-
tional calculus) is what motivated the development of causality.

The disagreement between interventional statements and con-
ditional statements is so important that it has a well-known name:
confounding. We say that X and Y are confounded when the causal
effect of action X := x on Y does not coincide with the corresponding
conditional probability.

When X and Y are confounded, we can ask if there is some combi-
nation of conditional probability statements that give us the desired
effect of a do-intervention. This is generally possible given a causal
graph by conditioning on the parent nodes PA of the node X:

P{Y = y | do(X := x)} = ∑
z

P{Y = y | X = x, PA = z}P{PA = z}

This formula is called the adjustment formula. It gives us one way
of estimating the effect of a do-intervention in terms of conditional
probabilities.

The adjustment formula is one example of what is often called
controlling for a set of variables: We estimate the effect of X on Y
separately in every slice of the population defined by a condition
Z = z for every possible value of z. We then average these estimated
sub-population effects weighted by the probability of Z = z in the
population. To give an example, when we control for age, we mean
that we estimate an effect separately in each possible age group and
then average out the results so that each age group is weighted by the
fraction of the population that falls into the age group.

Controlling for more variables in a study isn’t always the right
choice. It depends on the graph structure. Let’s consider what hap-
pens when we control for the variable Z in the three causal graphs
we discussed above.

• Controlling for a confounding variable Z in a fork X ← Z → Y
will deconfound the effect of X on Y.

• Controlling for a mediator Z on a chain X → Z → Y will eliminate
some of the causal influence of X on Y.

• Controlling for a collider will create correlation between X and Y.
That is the opposite of what controlling for Z accomplishes in the
case of a fork. The same is true if we control for a descendant of a
collider.
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The backdoor criterion

At this point, we might worry that things get increasingly compli-
cated. As we introduce more nodes in our graph, we might fear a
combinatorial explosion of possible scenarios to discuss. Fortunately,
there are simple sufficient criteria for choosing a set of deconfound-
ing variables that is safe to control for.

A well known graph-theoretic notion is the backdoor criterion10. 10 Pearl, Causality.

Two variables are confounded if there is a so-called backdoor path
between them. A backdoor path from X to Y is any path starting at X
with a backward edge “←” into X such as:

X ← A→ B← C → Y

Intuitively, backdoor paths allow information flow from X to Y
in a way that is not causal. To deconfound a pair of variables we
need to select a backdoor set of variables that “blocks” all backdoor
paths between the two nodes. A backdoor path involving a chain
A → B → C can be blocked by controlling for B. Information by
default cannot flow through a collider A → B ← C. So we only
have to be careful not to open information flow through a collider by
conditioning on the collider, or descendant of a collider.11 11 For additional discussion of backdoor

paths and confounding, see Pearl.

Unobserved confounding

The adjustment formula might suggest that we can always eliminate
confounding bias by conditioning on the parent nodes. However,
this is only true in the absence of unobserved confounding. In practice
often there are variables that are hard to measure, or were simply left
unrecorded. We can still include such unobserved nodes in a graph,
typically denoting their influence with dashed lines, instead of solid
lines.

Figure 6: Two cases of unobserved
confounding.

The above figure shows two cases of unobserved confounding.
In the first example, the causal effect of X on Y is unidentifiable.
In the second case, we can block the confounding backdoor path
X ← Z → W → Y by controlling for W even though Z is not
observed. The backdoor criterion lets us work around unobserved
confounders in some cases where the adjustment formula alone
wouldn’t suffice.

Unobserved confounding nonetheless remains a major obstacle
in practice. The issue is not just lack of measurement, but often lack



pattern classification revisited - 2019-12-14 15

of anticipation or awareness of a counfounding variable. We can try
to combat unobserved confounding by increasing the number of
variables under consideration. But as we introduce more variables
into our study, we also increase the burden of coming up with a valid
causal model for all variables under consideration. In practice, it is
not uncommon to control for as many variables as possible in a hope
to disable confounding bias. However, as we saw, controlling for
mediators or colliders can be harmful.

Randomization

The backdoor criterion gives a non-experimental way of eliminating
confounding bias given a causal model and a sufficient amount of
observational data from the joint distribution of the variables. An
alternative experimental method of eliminating confounding bias is
the well-known randomized controlled trial.

In a randomized controlled trial a group of subjects is randomly
partitioned into a control group and a treatment group. Participants
do not know which group they were assigned to and neither do the
staff administering the trial. The control group receives an actual
treatment, such as a drug that is being tested for efficacy, while the
control group receives a placebo identical in appearance. An outcome
variable is measured for all subjects.

The goal of a randomized controlled trial is to break natural incli-
nation. Rather than observing who chose to be treated on their own,
we assign treatment randomly. Thinking in terms of causal mod-
els, what this means is that we eliminate all incoming edges into the
treatment variable. In particular, this closes all backdoor paths and
hence avoids confounding bias.

There are many reasons why often randomized controlled trials
are difficult or impossible to administer. Treatment might be physi-
cally or legally impossible, too costly, or too dangerous. As we saw,
randomized controlled trials are not always necessary for avoiding
confounding bias and for reasoning about cause and effect. Nor are
they free of issues and pitfalls12. 12 Angus Deaton and Nancy Cartwright,

“Understanding and Misunderstanding
Randomized Controlled Trials,” Social
Science & Medicine 210 (2018): 2–21.Counterfactuals

Fully specified structural causal models allow us to ask causal ques-
tions that are more delicate than the mere effect of an action. Specif-
ically, we can ask counterfactual questions such as: Would I have
avoided the traffic jam had I taken a different route this morning?
Counterfactual questions are common. We can answer them given a
structural causal model. However, the procedure for extracting the
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answer from the model looks a bit subtle at first. It helps to start with
a simple example.

A simple counterfactual

To understand counterfactuals, we first need to convince ourselves
that they aren’t quite as straightforward as a single substitution in
our model.

Assume every morning we need to decide between two routes
X = 0 and X = 1. On bad traffic days, indicated by U = 1, both
routes are bad. On good days, indicated by U = 0, the traffic on
either route is good unless there was an accident on the route.

Let’s say that U ∼ B(1/2) follows the distribution of an un-
biased coin toss. Accidents occur independently on either route
with probability 1/2. So, choose two Bernoulli random variables
U0, U1 ∼ B(1/2) that tell us if there is an accident on route 0 and
route 1, respectively.

We reject all external route guidance and instead decide on which
route to take uniformly at random. That is, X := UX ∼ B(1/2) is also
an unbiased coin toss.

Introduce a variable Y ∈ {0, 1} that tells us whether the traffic
on the chosen route is good (Y = 0) or bad (Y = 1). Reflecting our
discussion above, we can express Y as

Y := X ·max{U, U1}+ (1− X)max{U, U0} .

In words, when X = 0 the first term disappears and so traffic is
determined by the larger of the two values U and U0. Similarly, when
X = 1 traffic is determined by the larger of U and U1.

Figure 7: Causal diagram for our traffic
scenario.

Now, suppose one morning we have X = 1 and we observe bad
traffic Y = 1. Would we have been better off taking the alternative
route this morning?

A natural attempt to answer this question is to compute the likeli-
hood of Y = 0 after the do-operation X := 0, that is, PM[X:=0](Y = 0).
A quick calculation reveals that this probability is 1

2 ·
1
2 = 1/4. In-

deed, given the substitution X := 0 in our model, for the traffic to be
good we need that max{U, U0} = 0. This can only happen when both
U = 0 (probability 1/2) and U0 = 0 (probability 1/2).

But this isn’t the correct answer to our question. The reason is that
we took route X = 1 and observed that Y = 1. From this observation,
we can deduce that certain background conditions did not manifest
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for they are inconsistent with the observed outcome. Formally, this
means that certain settings of the noise variables (U, U0, U1) are no
longer feasible given the observed event {Y = 1, X = 1}. Specifically,
if U and U1 had both been zero, we would have seen no bad traffic
on route X = 1, but this is contrary to our observation. In fact, the
available evidence {Y = 1, X = 1} leaves only the following settings
for U and U1:13 13 We leave out U0 from the table, since

its distribution is unaffected by our
observation.Table 3: Possible noise settings after observing evidence

U U1

0 1

1 1

1 0

Each of these three cases is equally likely, which in particular
means that the event U = 1 now has probability 2/3. In the absence
of any additional evidence, recall, U = 1 had probability 1/2. What
this means is that the observed evidence {Y = 1, X = 1} has biased
the distribution of the noise variable U toward 1. Let’s use the letter
U′ to refer to this biased version of U.14 14 Formally, U′ is distributed according

to the distribution of U conditional on
the event {Y = 1, X = 1}.

Working with this biased noise variable, we can again entertain the
effect of the action X := 0 on the outcome Y. For Y = 0 we need that
max{U′, U0} = 0. This means that U′ = 0, an event that now has
probability 1/3, and U0 = 0 (probability 1/2 as before). Hence, we
get the probability 1/6 = 1/2 · 1/3 for the event that Y = 0 under
our do-operation X := 0, and after updating the noise variables to
account for the observation {Y = 1, X = 1}.

To summarize, incorporating available evidence into our calcula-
tion decreased the probability of no traffic (Y = 0) when choosing
route 0 from 1/4 to 1/6. The intuitive reason is that the evidence
made it more likely that it was generally a bad traffic day, and even
the alternative route would’ve been clogged. More formally, the event
that we observed biases the distribution of exogenous noise variables.

We think of the result we just calculated as the counterfactual of
choosing the alternative route given the route we chose had bad
traffic.

The general recipe

We can generalize our discussion of computing counterfactuals from
the previous example to a general procedure. There were three es-
sential steps. First, we incorporated available observational evidence
by biasing the exogenous noise variables through a conditioning
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operation. Second, we performed a do-operation in the structural
causal model after we substituted the biased noise variables. Third,
we computed the distribution of a target variable.

These three steps are typically called abduction, action, and predic-
tion, as can be described as follows.

Definition 2. Given a structural causal model M, an observed event E,
an action X := x and target variable Y, we define the counterfactual
YX:=x(E) by the following three step procedure:

1. Abduction: Adjust noise variables to be consistent with the observed
event. Formally, condition the joint distribution of U = (U1, ..., Ud) on
the event E. This results in a biased distribution U′.

2. Action: Perform do-intervention X := x in the structural causal model
M resulting in the model M′ = M[X := x].

3. Prediction: Compute target counterfactual YX:=x(E) by using U′ as the
random seed in M′.

It’s important to realize that this procedure defines what a coun-
terfactual is in a structural causal model. The notation YX:=x(E)
denotes the outcome of the procedure and is part of the definition.
We haven’t encountered this notation before.

Put in words, we interpret the formal counterfactual YX:=x(E) as
the value Y would’ve taken had the variable X been set to value x in
the circumstances described by the event E.

In general, the counterfactual YX:=x(E) is a random variable that
varies with U′. But counterfactuals can also be deterministic. When
the event E narrows down the distribution of U to a single point
mass, called unit, the variable U′ is constant and hence the counter-
factual YX:=x(E) reduces to a single number. In this case, it’s com-
mon to use the shorthand notation Yx(u) = YX:=x({U = u}), where
we make the variable X implicit, and let u refer to a single unit.

The motivation for the name unit derives from the common sit-
uation where the structural causal model describes a population of
entities that form the atomic units of our study. It’s common for a
unit to be an individual (or the description of a single individual).
However, depending on application, the choice of units can vary. In
our traffic example, the noise variables dictate which route we take
and what the road conditions are.

Answers to counterfactual questions strongly depend on the
specifics of the structural causal model, including the precise model
of how the exogenous noise variables come into play. It’s possible
to construct two models that have identical graph structures, and
behave identically under interventions, yet give different answers to
counterfactual queries.15 15 Jonas Peters, Dominik Janzing, and

Bernhard Schölkopf, Elements of Causal
Inference (MIT Press, 2017).
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Potential outcomes

The potential outcomes framework is a popular formal basis for causal
inference, which goes about counterfactuals differently. Rather than
deriving them from a structural causal model, we assume their exis-
tence as ordinary random variables, albeit some unobserved.

Specifically, we assume that for every unit u there exist random
variables Yx(u) for every possible value of the assignment x. In the
potential outcomes model, it’s customary to think of a binary treat-
ment variable X so that x assumes only two values, 0 for untreated,
and 1 for treated. This gives us two potential outcome variables Y0(u)
and Y1(u) for each unit u.16 16 There is some potential for notational

confusion here. Readers familiar with
the potential outcomes model may be
used to the notation “Yi(0), Yi(1)” for
the two potential outcomes correspond-
ing to unit i. In our notation the unit
(or, more generally, set of units) appears
in the parentheses and the subscript
denotes the substituted value for the
variable we intervene on.

The key point about the potential outcomes model is that we only
observe the potential outcome Y1(u) for units that were treated. For
untreated units we observe Y0(u). In other words, we can never si-
multaneously observe both, although they’re both assumed to exist
in a formal sense. Formally, the outcome Y(u) for unit u that we
observe depends on the binary treatment T(u) and is given by the
expression:

Y(u) = Y0(u) · (1− T(u)) + Y1(u) · T(u)

It’s often convenient to omit the parentheses from our notation for
counterfactuals so that this expression would read Y = Y0 · (1− T) +
Y1 · T.

We can revisit our traffic example in this framework. The next
table summarizes what information is observable in the potential
outcomes model. We think of the route we choose as the treatment
variable, and the observed traffic as reflecting one of the two poten-
tial outcomes.

Table 4: Traffic example in the potential outcomes model

Route X Outcome Y0 Outcome Y1 Probability

0 0 ? 1/8

0 1 ? 3/8

1 ? 0 1/8

1 ? 1 3/8

Often this information comes in the form of samples. For exam-
ple, we might observe the traffic on different days. With sufficiently
many samples, we can estimate the above frequencies with arbitrary
accuracy.
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Table 5: Traffic data in the potential outcomes model

Day Route X Outcome Y0 Outcome Y1

1 0 1 ?
2 0 0 ?
3 1 ? 1

4 0 1 ?
5 1 ? 0

. . . . . . . . . . . .

A typical query in the potential outcomes model is the average
treatment effect E[Y1 − Y0]. Here the expectation is taken over the
properly weighted units in our study. If units correspond to equally
weighted individuals, the expectation is an average over these indi-
viduals.

In our original traffic example, there were 16 units corresponding
to the background conditions given by the four binary variables
U, U0, U1, UX . When the units in the potential outcome model agree
with those of a structural causal model, then causal effects computed
in the potential outcomes model agree with those computed in the
structural equation model. The two formal frameworks are perfectly
consistent with each other.

As is intuitive from the table above, causal inference in the poten-
tial outcomes framework can be thought of as filling in the missing
entries (“?”) in the table above. This is sometimes called missing data
imputation and there are numerous statistical methods for this task.
If we could reveal what’s behind the question marks, estimating the
average treatment effect would be as easy as counting rows.

There is a set of established conditions under which causal infer-
ence becomes possible:

1. Stable Unit Treatment Value Assumption (SUTVA): The treat-
ment that one unit receives does not change the effect of treatment
for any other unit.

2. Consistency: Formally, Y = Y0(1− T) + Y1T. That is, Y = Y0 if
T = 0 and Y = Y1 if T = 1. In words, the outcome Y agrees with
the potential outcome corresponding to the treatment indicator.

3. Ignorability: The potential outcomes are independent of treat-
ment given some deconfounding variables Z, i.e., T ⊥ (Y0, Y1) | Z.
In words, the potential outcomes are conditionally independent of
treatment given some set of deconfounding variables.

The first two assumptions automatically hold for counterfactual
variables derived from structural causal models according to the
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procedure described above. This assumes that the units in the po-
tential outcomes framework correspond to the atomic values of the
background variables in the structural causal model.

The third assumption is a major one. It’s easiest to think of it as
aiming to formalize the guarantees of a perfectly executed random-
ized controlled trial. The assumption on its own cannot be verified or
falsified, since we never have access to samples with both potential
outcomes manifested. However, we can verify if the assumption is
consistent with a given structural causal model by checking if the set
Z blocks all backdoor paths from treatment T to outcome Y.

There’s no tension between structural causal models and potential
outcomes and there’s no harm in having familiarity with both. It
nonetheless makes sense to say a few words about the differences of
the two approaches.

We can derive potential outcomes from a structural causal model
as we did above, but we cannot derive a structural causal model from
potential outcomes alone. A structural causal model in general en-
codes more assumptions about the relationships of the variables. This
has several consequences. On the one hand, a structural causal model
gives us a broader set of formal concepts (causal graphs, mediating
paths, counterfactuals for every variable, and so on). On the other
hand, coming up with a plausibly valid structural causal model is
often a daunting task that might require knowledge that is simply
not available. We will dive deeper into questions of validity below.
Difficulty to come up with a plausible causal model often exposes
unsettled substantive questions that require resolution first.

The potential outcomes model, in contrast, is generally easier to
apply. There’s a broad set of statistical estimators of causal effects
that can be readily applied to observational data. But the ease of ap-
plication can also lead to abuse. The assumptions underpinning the
validity of such estimators are experimentally unverifiable. Frivolous
application of causal effect estimators in situations where crucial as-
sumptions do not hold can lead to false results, and consequently to
ineffective or harmful interventions.

Bibliographic notes and further reading

Introductions to causality

There are several excellent introductory textbooks on the topic of
causality. For an introduction to causality turn to Pearl’s primer17, 17 Judea Pearl, Madelyn Glymour, and

Nicholas P. Jewell, Causal Inference in
Statistics: A Primer (Wiley, 2016).

or the more comprehensive text18. At the technical level, Pearl’s

18 Pearl, Causality.text emphasizes causal graphs and structural causal models. Our
exposition of Simpson’s paradox and the UC Berkeley was influenced
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by Pearl’s discussion, updated for a new popular audience book19. 19 Pearl and Mackenzie, The Book of Why.

All of these texts touch on the topic of discrimination just cited. In
these books, Pearl takes the position that discrimination corresponds
to the direct effect of the sensitive category on a decision.

The technically-minded reader will enjoy complementing Pearl’s
book with the recent open access text by Peters, Janzing, and Schölkopf20 20 Peters, Janzing, and Schölkopf,

Elements of Causal Inference.that is available online. The text emphasizes two variable causal mod-
els and applications to machine learning. See Spirtes, Glymour and
Scheines21 for a general introduction based on causal graphs with 21 Peter Spirtes et al., Causation, Predic-

tion, and Search (MIT press, 2000).an emphasis on graph discovery, i.e., inferring causal graphs from
observational data.

Morgan and Winship22 focus on applications in the social sciences. 22 Stephen L. Morgan and Christopher
Winship, Counterfactuals and Causal
Inference (Cambridge University Press,
2014).

Imbens and Rubin23 give a comprehensive overview of the technical

23 Guido W. Imbens and Donald B. Ru-
bin, Causal Inference for Statistics, Social,
and Biomedical Sciences (Cambridge
University Press, 2015).

repertoire of causal inference in the potential outcomes model. An-
grist and Pischke24 focus on causal inference and potential outcomes

24 Joshua D. Angrist and Pischke Jörn-
Steffen, Mostly Harmless Econometrics:
An Empiricist’s Companion (Princeton
University Press, 2009).

in econometrics.
Hernan and Robins25 give another detailed introduction to causal

25 Miguel Hernán and James Robins,
Causal Inference (Boca Raton: Chapman
& Hall/CRC, forthcoming, 2019).

inference that draws on the authors’ experience in epidemiology.
Pearl26 already considered the example of gender discrimination

26 Pearl, Causality.

in UC Berkeley graduate admissions that we discussed at length.
In his discussion, he implicitly advocates for a view of discussing
discrimination based on the causal graphs by inspecting which paths
in the graph go from the sensitive variable to the decision point.

Systems, dynamics, feedback loops

So far we have assumed that our causal models are always acyclic.
Variables cannot simultaneously cause each other. In many appli-
cations it does make sense to talk about cyclic dependencies. For
example, we might reason that the economy grew, because of an in-
crease investments, and that investments grew, because of a growing
economy. The formalisms we encountered do not directly apply to
such closed loop dynamics.

There are a few ways of coping. One is to unroll the system into
discrete time steps. What this means is that we repeat the causal
graph for some number of discrete time steps in such a manner that
each node appears multiple times indexed by a time step.

An alternative route is to develop formalisms that directly deal
with actions in closed loop dynamics. See, work by Bongers et al.27 27 Stephan Bongers et al., “Theoret-

ical Aspects of Cyclic Structural
Causal Models,” arXiv.org Preprint
arXiv:1611.06221v2 (2018).

on extending the structural causal model perspective to cyclic mod-
els.

Traditionally, feedback systems are the focus of control theory, an
area with a long history and vast technical repertoire28. While much 28 Karl Johan Aström and Richard

M Murray, Feedback Systems: An In-
troduction for Scientists and Engineers
(Princeton university press, 2010).

of control theory focuses on physical systems, concepts from control

https://mitpress.mit.edu/books/elements-causal-inference
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theory also influenced policy and decision making in other domains.
A well-known example is the area of system dynamics pioneered by
Forrester29 in the 60s and 70s that lead to some politically influen- 29 Jay W Forrester, “Urban Dynamics,”

IMR; Industrial Management Review
(Pre-1986) 11, no. 3 (1970): 67; Jay W
Forrester, “Counterintuitive Behavior of
Social Systems,” Technological Forecasting
and Social Change 3 (1971): 1–22; Jay W
Forrester, “System Dynamics, Systems
Thinking, and Soft or,” System Dynamics
Review 10, nos. 2-3 (1994): 245–56.

tial works such as Limits to Growth30. But see Baker’s thesis31 for a

30 Donella H. Meadows, Jorgan Randers,
and Dennis Meadows, The Limits to
Growth: The 30-Year Update (Routledge,
2012).
31 Kevin T. Baker, “World Processors:
Computer Modeling, Global Environ-
mentalism, and the Birth of Sustainable
Development” (Northwestern Univer-
sity, 2019).

history of system modeling and its pitfalls.
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