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DS 102 team this semester

Prof. Jacob Akosua Busia Ashley Chien
Steinhardt

Serena Wang Clara
Guo Wong-Fannjiang

Wenshuo

Building on tons of work by Michael Jordan, Fernando Perez and the whole Fall 2019 team.



Announcements

All class discussion on Piazza. Please be respectful and reasonable.
TAs do not answer questions by email. Available via Piazza/labs/OH

Enrollment cap of 160 is firm. Instructors cannot change anything about that.

Don't email instructors about class absence. Attendance is strongly encouraged but not mandatory.

Email Laura Imai (lauraimai@berkeley.edu) for enrollment related questions.

Hardt OH: Wed 4p-5p in 525 Soda Hall


mailto:lauraimai@berkeley.edu

What’s data science?
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Halley’s life table
from 1693

based on data collected between 1687-1691




From data to decisions

ANNUITIES

'LIVES:

The Varuation of
ANNUITIES upon any
Number of Lives ; as
alfo, of RevERsIONS.

| ; " To which is added,

An APPENDIX concerning the
ExPEcTATIONS of LiFE, and
Probabilities of SURVIVOR SHIP.

By A. DE MoivrRe. FE R.S.

[ LONDO N,
! Printed by W. P. and fold by Francis Fayram,
at the South-Eutrance of the Royal Exchange; and
Benj. Motte, at the Middle Temple Gate, Fleetftr:et ;
and W. Pearfon, Printer, over-againlt Wright's=
Coffee-Houfe, Alderfyate-Streer, MDCCXXV.

Halley's life table was then used to price life annuities

Price of annuity at age x is the expected sum of discounted
fixed annual payment for the rest of person’s life.

Price at age x = 3, p[death at age x+i] 0.95' (annual payout)
\ )

|

Halley’s life expectancy model



Halley built the
lookup table just
by counting data




We now call these lookup tables
models

and they've gotten bigger



Large tables with many
columns require clever
statistical interpolation and
smoothing




333 years of consequential decisions from data

Halley built a statistical model for decision making
An approach used for centuries with varying degrees of rigor
20th century statistics formalized and vastly extended the approach

Current ML/Al wave pushes it into ever-increasing range of domains: Health,
finance, insurance, employment, education, criminal justice, policing



The standard view of learning and decision making

®

Decision

Learnin
Data J >  Model

First part of the class operates in this simple world view.



Context and consequences of decisions



“[Tlechnologies are developed and
used within a particular social,
economic, and political context.
They arise out of a social structure,
they are grafted on to it, and they
may reinforce it or destroy it, often in
ways that are neither foreseen nor
foreseeable.”

Ursula Franklin, 1989



“[Clontext is not a passive medium
but a dynamic counterpart. The
responses of people, individually,
and collectively, and the responses
of nature are often underrated in the
formulation of plans and
predictions.”

Ursula Franklin, 1989



Early example of dynamics in decision making

In 1696, England's King William IIl seeks to tax
wealth, but how to know one’s wealth?

Introduces tax based on number of windows

|dea spreads to France, Spain, Scotland




People adapt

One row of houses in Edinburgh
featured no bedroom windows at
all.

Tax revenues fell




Goodhart’s law

“Any observed statistical regularity will tend to collapse
once pressure is placed upon it for control purposes.” -
Charles Goodhart, 1975

Related:
Lucas critique 1976 in macroeconomics
Campbell’'s law 1979 in social sciences



Learning invites gaming
Behavior Revealed in Mobile Phone Usage

Predicts Credit Repayment

Daniel Bjorkegren' and Darrell Grissen:

e Correlation is all you need for prediction

e Features often easy to change Number of outgoing calls

e Most learning problems aren't causal Text response rate
[Scholkopf et al. 2012]

Average airtime balance

Entropy of GPS coordinates



How can we identify cause?




How do we make decisions in changing environments?




What behavior do our decisions incentivize?

Get moving.

Start a healthy habit in the new year

get moving. Want to know the fastes
more. Studies have shown that low-i
increases fat burn. It also produces €
elevators that make you feel good! |
speed-walk with your friends or are training for the NYC Marathon,
we recognize that a little healthy competition is good! Download
the Oscar app to your phone and sync Apple Health or Google Fit
to track your steps and earn $1 a day in Amazon® Gift Card rewards
when you meet your step goals.

https://www.hioscar.com/faq/five-ways-to-have-your-healthiest-year-yet



https://www.hioscar.com/faq/five-ways-to-have-your-healthiest-year-yet

But there are two ways of going about it

dgHE

$E5: 624599530




Are our decisions fair? Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.




How do we respect individual privacy?

We'll see a powerful tool called Differential Privacy




Decisions in the real world

Decisions feed into a social system of individuals, institutions, and markets
This changes how we ought to think about decision making in the first place

Decisions are consequential
Success of decision-making in the real world depends on context

Real-world decision-making is a dynamic problem



Looking ahead

A typical Al/machine learning class today will focus on pattern recognition
Data 102 focuses on decisions

Algorithmic decisions already are and will increasingly be deeply embedded in all
kinds of sociotechnical systems.

You'll learn some of the tools to maneuver this reality.



Plhe) B U\\ wC- i\) P&{ (

Photo credit: Peg Skorpinski

Artificial Intelligence — The
Revolution Hasn’t Happened Yet

78\ Michael Jordan
S Apr 18,2018 - 16 min read yw i [

Go ahead
and read
this article.



Back to the basics: Decision theory 101



The simplest setup

Reality is in one of two states 0, 1

Decisionis also 0, 1

Decision x is the right one if reality is in state x
Classification: Cat vs Dog
Prediction: Rainfall vs sunshine
Hypothesis testing: Null vs Non-Null

Detection: Signal vs Noise



The basic two by two table

Decision
0 1
TN = True Negative
2 " B is FP = False Positive
©
[ — :
xr _ EN TP FN = False Negative
FP = True Positive

Sometimes called “confusion matrix”, because it causes confusion



And then there’s this...

False positive = Type 1 error

False negative = Type 2 error

Confusing them = Type 3 error

Being friends with people who use them = Type 4 error

| won't be using these names, since | already forgot which one is which



The basic two by two table

Decision
0 1
TN = True Negative
> ° TN NP FP = False Positive
©
[ — :
xr _ EN TP\ FN = False Negative
FP = True Positive

Think of these as good: Low cost or reward



The basic two by two table

Decision

0

1

TN

Reality

TN = True Negative

FP = False Positive
FN = False Negative

FP = True Positive

Think of these as bad: High cost or penalty



Examples

- Medical: 0 =no disease, 1 = disease

« Commerce: 0 = no fraud, 1 = fraud

« Physics: 0 = no Higgs boson, 1 = Higgs boson
 Social network: 0 = no link, 1 = link

- Self-driving car: 0 = no pedestrian, 1 = pedestrian
- Search: 0 = not relevant, 1 = relevant

Lots of complications arise in real settings



Towards a statistical framework

- Although the two-by-two table is useful conceptually, it's
not clear how to make use of it in a real problem, because
we don't know Reality

- We need to move towards a statistical framework, where
we consider not just one decision, but a set of related
decisions



Towards a statistical framework

- Imagine we not only make one decision, but we build a
decision-making algorithm

- We want to evaluate the algorithm not just on one decision,
but on a set of related decisions

- Concretely, we may have a collection of cases, where we
repeatedly make a 0/1 decision

- Example: binary classification, hypothesis testing



Counting (reality, decision) pairs

Reality

Decision

0 1
nOO n01
n10 n11

N=nytny+ntn,

E.g. n..= number of true positives



Counting (reality, decision) pairs row-wise

Decision
0 1
o
nOO n01

Reality

true positives rate

Sensitivity, power, recall

11

Nt

11



Counting (reality, decision) pairs row-wise

Decision
0 1

Reality

— n,, N4, true negative rate

specificity, selectivity

00

oot

01



Probability view

Imagine you're cases are drawn from a distribution
True positive rate: Pr(Decision = 1 | Reality = 1)

True negative rate: Pr(Decision = 0 | Reality = 0)

The count table can be computed from a finite sample

How well we can estimate the distribution quantities from a finite sample depends
on prevalence of positive and negative cases.



Probability view

Imagine you're cases are drawn from a distribution

True positive rate: Pr(Decision = 1 | Reality = 1)

True negative rate: Pr(Decision = 0 | Reality = 0)

False negative rate: Pr(Decision =0 | Reality = 1) =1 - Pr(Decision = 1 | Reality = 1)

False positive rate: Pr(Decision = 1 | Reality = 0) = 1 - Pr(Decision = 0 | Reality = 0)



What we want

|deally, we want high true positive rate and high true negative rate.

But there’s a trade-off.



Example: Pearson’s 1894 problem

Decide if crab is male (0) or female (1)
Observe ratio R of forehead breadth to body length
Decision = 1 if R >threshold and 0 if R < threshold

Each setting of threshold gives us a different decision rule



The trade-off curve (also called ROC curve)

—
I

® Threshold =0

True positive rate

3 —

0 False positive rate 1
Threshold =1




Neyman-Pearson formulation (1932)

Constrained optimization:
Maximize true positive rate
s.t. false positive rate < some fixed number (e.g. 0.05)

Fruitful idea, sometimes the right thing to do, but not “written in stone”



Counting cases column-wise

Decision
0 1 Pr(Reality = 1 | Decision = 0)
o
> nO‘I
=
©
& Ny
‘_ N4 false omission rate
n. .+

00
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Counting cases column-wise

Decision
0 T Pr(Reality = 0 | Decision = 1)
3’ < nOO
£
2 _ . Noq
n., false discovery rate
n01+

n‘l‘l




Hypothesis tests as decision making

Hypothesis H
Reality: Null hypothesis is true (0), null hypothesis is false (1)

Decision: Accept null hypothesis (0), Reject null hypothesis (1)



False discovery rate in hypothesis testing

FPR = Pr(reject | null) = 0.05

Run 10,000 9 900 true 4_195 fals_,e

in(éllig;)eel‘ﬁgz,nt nu”S dlscoverles “false discovery
te” = 495/575

hypothesis 100 80 true e

tests non-nulls dlscoverles

TPR = Pr(reject | non-null) = 0.80

Note: We're again not being rigorous at this point; FDR is
actually an expectation of this proportion. We'll do it right later.



