
DS 102 Homework 5

If you are handwriting your solution please make sure your answers are legible,
as you may lose points otherwise.
Data science is a collaborative activity. While you may talk with others about
the homework, please write up your solutions individually. If you do discuss
the homework with others, please include their names on your submission.

Due on Gradescope by 9:29am, Tuesday April 21, 2020

1. (15 points) Generalized Linear Model for Dilution Assay

Being able to reformulate problems as generalized linear models (GLMs) enables you to
solve a wide variety of problems. If you haven’t worked through Discussion 8 on GLMs,
we’d recommend you review that material first. In particular, make sure you understand
that formulating a GLM involves specifying 1) the output distribution and 2) the link
function, and how to go about choosing those two components.

In this problem, you’ll retrace the footsteps of the statistician R. A. Fisher and develop
one of the very first applications of GLMs. In a 1922 paper, Fisher formulated a GLM
he used to estimate the unknown concentration ρ0 of an infectious microbe in a solution.

Without specialized technology to measure ρ0 from the solution, Fisher envisioned the
following procedure: we will progressively dilute the original solution, and after each
dilution, we’ll pour out some small volume v onto a sterile plate. If zero microbes land
on the plate, it will remain sterile, but if any microbes land on a plate, they will grow
visibly on it (we call this an “infected plate”). Fisher’s idea was that by observing
whether or not the plate is infected at each dilution, and by formulating the relationship
between this data and ρ0 as a GLM, we can estimate ρ0 from this data.

Specifically, let ρt denote the concentration at dilution t. Each time, we dilute the
solution to be half its concentration:

ρt =
ρ0
2t

(1)

for t = 0, 1, . . .. When we pour out volume v of the solution onto the plate, and wait
awhile to allow for microbe growth, we can observe whether a plate was infected (i.e.,
has a non-zero number of microbes) or is sterile (i.e., has zero microbes). Therefore, our
data Yt ∈ {0, 1} is whether or not the plate is infected at each dilution.

In the next few parts, we’ll formulate a GLM that relates ρ0 and t to the data Yt.
Estimating the parameters of this GLM allowed Fisher to then estimate ρ0, as will
become clear in the last part.

(a) (2 points) At dilution t, the data Yt ∈ {0, 1} indicates whether or not the plate is
infected. Let µ(t) := E[Yt] denote the chance that a plate is infected. Write down
a plausible output distribution for Yt, using µ(t).
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(b) (5 points) At dilution t, we pour out volume v onto a plate, so the expected number
of microbes on the plate is ρtv. The actual number of microbes is distributed as a
Poisson random variable with this mean ρtv:

# microbes on plate at dilution t ∼ Poisson(ρtv). (2)

Using this fact, write out an expression for µ(t) := E[Yt]. Start with

µ(t) = P(plate is infected at dilution t) (3)

= 1− P(there are 0 microbes on plate at dilution t). (4)

(c) (5 points) Find a link function g such that

g(µ(t)) = β0 + β1t (5)

for some constants β0 and β1.

(d) (3 points) Choosing an appropriate output distribution and link function as we’ve
done in Parts (a) and (c) completes the GLM specification. Now, suppose you’ve
estimated β0 and β1 (e.g., using maximum-likelihood estimation). Write down an
estimate of ρ0.

2. (25 points) Policies and Value Functions The figure below (left subplot) shows a
grid representation of a simple finite Markov Decision Process (MDP). The cells of the
grid correspond to states of the environment. At each cell, four actions are possible:
north, south, east, and west. These actions deterministically move the agent one cell
in the respective direction on the grid, and result in reward of 0, with the following
exceptions:

• Actions that would take the agent off the grid leave its location unchanged, and
result in a reward of 1.

• From state A, all actions yield a reward of +10 and take the agent to A′.

• From state B, all actions yield a reward of +5 and take the agent to B′.

Suppose the agent selects all four actions with equal probability in all states. The figure
below (right subplot) shows the value function for this policy, for discounted rewards
with γ = 0.9.
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(a) (10 points) Verify numerically that the center state has a value of +0.7 under this
policy, assuming that the values of the adjacent squares are correct (+2.3, +0.4, -0.4,
and +0.7 for the top-, right-, bottom-, and left-neighboring states, respectively).
(These numbers are accurate only to one decimal place.) Hint: Use the Bellman
equation.

(b) (10 points) Prove that adding a constant c to all the rewards adds a constant vc
to the values of all states, and therefore does not affect the relative values of states
under any policy (i.e., the differences between states’ values doesn’t change). What
is vc in terms of c and γ?

(c) (5 points) In a few sentences, explain why state A has an expected return that
is less than 10, its immediate reward, while state B is valued more than 5, its
immediate reward.

3. (25 points) Markov Decision Processes for Robot Soccer A soccer robot A is on
a fast break toward the goal, starting in position 1. From positions 1 through 3, it can
either shoot (S) or dribble the ball forward (D). From 4 it can only shoot. If it shoots,
it either scores a goal (state G) or misses (state M). If it dribbles, it either advances a
square or loses the ball, ending up in state M.

In this MDP, the states are 1, 2, 3, 4, G, and M, where G and M are terminal states.
The transition model depends on the parameter y, which is the probability of dribbling
successfully (i.e., advancing a square). Assume a discount of γ = 1. For k ∈ {1, 2, 3, 4},
we have

P(G | k, S) =
k

6

P(M | k, S) = 1− k

6
P(k + 1 | k,D) = y

P(M | k,D) = 1− y,
R(k, S,G) = 1

and rewards are 0 for all other transitions.

(a) (5 points) Denote by V π the value function for the specific policy π. What is V π(1)
for the policy π that always shoots?

(b) (5 points) Denote by Q∗(s, a) the value of a q-state (s, a), which is the expected
utility when starting with action a at state s, and thereafter acting optimally. What
is Q∗(3, D) in terms of y?
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(c) (10 points) Denote by V ∗t (s) the value of a state s at iteration t, which is the ex-
pected utility when starting in state s and acting optimally. Using y = 3

4
, complete

the first two iterations (t = 1, 2) of value iteration. Iteration 0 corresponds to hav-
ing value 0 in every state: V ∗0 (1) = V ∗0 (2) = V ∗0 (3) = V ∗0 (4) = 0.

Hint: Recall that V ∗t+1(s) = max
a∈A

∑
s′
P(s′|s, a)(̇R(s, a, s′)− V ∗t (s′)).

(d) (5 points) For what range of values of y is Q∗(3, S) ≥ Q∗(3, D)?

4. (20 points) Using the Bootstrap to Evaluate Drug Bioequivalence. When drug
companies introduce new drugs, the FDA requires them to show that the new drug
is bioequivalent to the current drug used to treat the same condition. Bioequivalence
means that the effect of the new drug is not substantially different from the effect of the
current drug. The way the effect is measured is application-dependent—here, we’ll look
at drugs that infuse a certain hormone into the blood. A drug’s effect is therefore the
amount of hormone in the blood after administering the drug.

To formally define bioequivalence, let the random variables O,N, P denote the effect of
the old drug, the effect of the new drug, and the effect of a placebo, respectively. The
FDA requirement for bioequivalence is that

|θ| ≤ 0.2 (6)

where

θ =
E[N −O]

E[O − P ]
. (7)

In this problem, you’ll estimate θ from a dataset and use the bootstrap to determine,
with a certain confidence, whether or not we have bioequivalence. Please submit all code
and plots generated for this problem (for example, you can do the problem in a Jupyter
notebook and save it as a PDF, if you’d like).

(a) (2 points) The CSV file bioequivalence.csv on the website contains the follow-
ing data on the level of a hormone in 8 subjects’ blood, after medications were
administered.
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Download the data, and use it to compute the plug-in estimate θ̂ of θ.

(b) (15 points) Part (a) gave an estimate of θ, but by itself it doesn’t capture the
certainty we have in the estimate, so we can’t use it to conclude that we have
bioequivalence with a given confidence level. Instead, we’ll compute a bootstrap
confidence interval to do this.

(i) Implement a function bootstrap bioequivalence(N, O, P, B) which takes in
the following inputs:

• N = (N1, . . . , Nn), an array of the effects of the new drug on n subjects

• O = (O1, . . . , On), an array of the effects of the old drug on n subjects

• P = (P1, . . . , Pn), an array of the effects of the placebo on n subjects

• B, an integer which is the number of bootstrap replicates

and outputs a length-B array of bootstrap replicates of θ̂.

(ii) Using bootstrap bioequivalence(N, O, P, B), compute B = 10000 boot-
strap replicates of θ̂. Plot a histogram of these replicates, and label the x- and y-
axes.

(iii) Using the replicates from (ii), compute a 95-percentile confidence interval for
θ (make sure to include the code you use to compute this). Hint: Use the function
np.percentile.

(c) (3 points) Based on Part (b), can we conclude the new drug and old drug are
bioequivalent, at the 95% confidence level? That is, does the 95% confidence interval
fall within the FDA requirement for bioequivalence?
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