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DS 102 Homework 4

If you are handwriting your solution please make sure your answers are legible,
as you may lose points otherwise.
Data science is a collaborative activity. While you may talk with others about
the homework, please write up your solutions individually. If you do discuss
the homework with others, please include their names on your submission.

Due on Gradescope by 9:29am, Tuesday 7th April, 2020

1. (15 points) Backdoor criteria
A research team wants to estimate the effectiveness of a new veterinary
drug for sick seals. They ask aquariums across the country to volunteer
their sick seals for the experiment. Since the team offers monetary compensation
for volunteering, zoos with less income decide to volunteer their sick seals,
whereas zoos with more income are less compelled to volunteer their seals.

It turns out that zoos with less income feed their seals less nutritious
diets (regardless of whether they are sick or healthy), due to budgetary
constraints. Less nutritious diets prevent seals from recovering as effectively.

(a) (5 points) Draw a causal graph between variables X, Y , I and N
which denote receiving the drug, recovering, the income level of the
zoo, and how nutritious a seal’s diet is, respectively. Justify each edge
in your graph.

(b) (5 points) The backdoor criterion is a criterion for determining which
variables we can adjust for, to block all the confounding pathways
between X and Y . Formally, in a causal graph, we define a path
between two nodes X and Y as a sequence of nodes beginning with X
and ending with Y, in which each node is connected to the next by
an edge (which can have either direction). Given an ordered pair of
variables (X, Y ), a set of variables Z satisfies the backdoor criterion
relative to (X, Y ) if no node in Z is a descendant of X, and Z blocks
every path between X and Y that contains an arrow into X.

Using the causal graph in the previous part, determine a minimal set
of variable(s) that satisfies the backdoor criterion relative to (X, Y ).
(The answer may not be unique.)

(c) (5 points) Given your answer to the previous part, what is the
adjustment formula for the effect of the drug on recovery?

Hint: see Lecture 14 Section 14.2.

2. (20 points) Inverse Propensity ScoreWeighting In this problem, we’ll
develop and implement an estimator for the treatment effect E[Y | do(X :=
1)] − E[Y | do(X := 0)], where Y is the outcome variable and X is the
treatment variable.

To do this, we’ll use inverse propensity score weighting (see Lecture 14).
Let

e(z) = E[X | Z = z] = P(X = 1 | Z = z)
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denote the probability that the treatment is administered, given the value
of the confounders. When Z denotes all confounders (i.e. there are no
hidden confounders), we have

E[Y | do(X := 1)] = E
[
Y X

e(Z)

]
which motivates a practical estimator for E[Y | do(X := 1)], described as
follows.

Suppose we have a dataset with n samples, where xi ∈ {0, 1}, yi, and zi are
the values of the treatment, outcome, and confounders for the i-th sample,
respectively (note that the treatment is binary-valued, since it was either
administered or not).

In practice, we don’t know e(z), but we can estimate it by fitting a logistic
regression model ê(z) ≈ e(z) that predicts xi from zi. We can then use
the following estimator for E[Y | do(X := 1)]:

1

n

n∑
i=1

xiyi
ê(zi)

which we call the inverse propensity score weighted estimator (IPSWE).

(a) (10 points) Show that E[Y | do(X := 0)] = E[Y (1−X)
1−e(Z)

]. (Hint: follow

the derivation of E[Y | do(X := 1)] = E[ Y X
e(Z)

] in Lecture 14 Section

14.3, modifying as necessary to model do(X := 0) instead of do(X :=
1).)

(b) (5 points) Write an IPSWE for E[Y | do(X := 0)] that uses an
estimated ê(z) ≈ e(z), analogous to the IPSWE of E[Y | do(X := 1)].

(c) (5 points) Write an estimator for the treatment effect. (Hint: Combine
the IPSWEs of E[Y | do(X := x)], x ∈ {0, 1}.)

3. (25 points) Causal Inference on an IHDP Dataset

In this problem, you’ll apply the treatment effect estimator derived in the
previous problem to a dataset from the Infant Health and Development
Program (IHDP). The IHDP was an experiment that treated low-birth-weight,
premature infants with intensive high-quality childcare from a trained
provider. The goal will be to estimate the causal effect of this treatment
on the outcome, the children’s cognitive test scores. This dataset does not
represent a randomized trial in which treatments were randomly assigned,
so there may be confounders between the treatment and outcome.

Download the dataset the course website (ihdp.csv). You can do this
problem in a Jupyter Notebook, then save and upload it as a PDF, just
as you do with lab assignments. Please include all code, plots, and code
used to generate plots with your submission.

(a) (5 points) The CSV file ihdp.csv has 27 columns:
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• Column 1 is the treatment xi ∈ {0, 1}, which indicates whether
or not the treatment was given to the infant.

• Column 2 is the outcome yi ∈ R, the child’s cognitive test score.

• Columns 3-27 contain 25 features of the mother and child (e.g.
the child’s birth weight, whether or not the mother smoked during
pregnancy, her age and race). Since this dataset was not collected
by a randomized trial, these features could all confound xi and
yi, and are denoted by zi ∈ R25.

In this part, you’ll estimate ê(z) by fitting a logistic regression model
that predicts xi from zi. For any zi, ê(zi) is then the predicted
probability that xi = 1 made by this logistic regression model on
zi. Specifically:

1. Read the data in ihdp.csv (e.g. using the csv package in Python)
into three arrays: X ∈ {0, 1}n containing the treatments, Y ∈ Rn

containing the outcomes, and Z ∈ Rn×25 containing the features.

2. To fit a logistic regression model, use the scikit-learn package
in Python, which is imported as sklearn. Start with the following
two lines:
from sklearn.linear model import LogisticRegression as

LR

lr = LR(penalty=‘none’, max iter=200, random state=0)

3. Use the lr.fit() method to fit the logistic regression model ê(z)
(see the documentation here.)

(b) (10 points) Write a function estimate treatment effect that computes
the estimator of the treatment effect you derived in the previous
problem. It should take in the following arguments:

• a fitted linear regression model (the LogisticRegression object
lr from the previous part)

• X
• Y
• Z

and output a single value, which is the estimate of the treatment
effect. (Hint: See the LogisticRegression object’s predict proba

method.)

(c) (5 points) Use the function estimate treatment effect from the
previous part to estimate the treatment effect for the IHDP dataset.
Report this estimate. According to the estimate, did the treatment
have a beneficial causal effect on the outcome (i.e. cause cognitive
test scores to increase)?

(d) (5 points) The difference between the empirical conditional expectations,

1

n1

n∑
i=1

yi1[xi = 1]− 1

n0

n∑
i=1

yi1[xi = 0] ≈ E[Y | X = 1]−E[Y | X = 0],

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.fit
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.predict_proba
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where n1 =
∑n

i=1 1[xi = 1] and n0 =
∑n

i=1 1[xi = 0] is a “naive”
estimator of the treatment effect. Report this estimate on the IHDP
dataset. Why is it different from the estimate you computed in the
previous part? Are there any circumstances under which these two
estimators should produce the same estimates?

4. (40 points) Regret of the Explore-then-Commit Algorithm In this
problem, we will analyze the regret of the Explore-then-Commit algorithm
for a multi-armed-bandit problem.

Suppose we have a stochastic multi-armed bandit problem where there
are K arms. Let Pi denote the reward distribution of arm i, which has
mean µi. At round t, each arm independently generates a reward from its
reward distribution. Let Yi,t ∼ Pi, i = 1, . . . , K denote the reward of arm
i in round t. Assume the rewards are bounded between a and b for some
a < b, i.e. P(Yi,t ∈ [a, b]) = 1 for Yi,t ∼ Pi, i = 1, . . . , K and for all t.

At round t, the player pulls an arm At ∈ {1, . . . , K}. The reward actually
received by the player on round t is then Xt = YAt,t.

See Algorithm 1 for the Explore-then-Commit (EC) algorithm. EC iterates
through the K arms, and pulls each arm c times for a total of cK pulls.
After cK pulls, it commits to the arm with the highest sample mean µ̂i:

µ̂i =
1

c

c∑
s=1

Yi,K(s−1)+i

where Yi,K(s−1)+i is equivalent to the reward received when the i-th arm is
pulled the s-th time. The algorithm then pulls that arm (with the highest
sample mean) every time afterwards.

Algorithm 1 Explore-then-Commit Algorithm

input: Number of exploratory pulls c per arm
For t = 1, 2, . . . :

At =

{
(t mod k) + 1 : t ≤ cK

arg maxi∈{1,...,K} µ̂i : t > cK

We define the mean of the optimal arm as

µ∗ = max
i∈{1,...,K}

µi

and the sub-optimality gap of a sub-optimal arm i as

∆i = µ∗ − µi.
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In this problem, we will analyze the pseudo-regret of this algorithm. The
pseudo-regret of an algorithm is given by:

R(n) = nµ∗ − E

[
n∑

t=1

Xt

]
.

(a) (10 points) Define the random variable Ti(t) as the number of times
arm i has been pulled, up to and including time n:

Ti(n) =
n∑

t=1

I{At = i}.

Show that we can decompose the regret as:

R(n) =
K∑
i=1

∆iE[Ti(n)].

Hint: Start with the following:

nµ∗ − E

[
n∑

t=1

Xt

]
= E

[
n∑

t=1

(µ∗ −Xt)

]

= E

[
K∑
i=1

n∑
t=1

I{At = i}(µ∗ − Yi,t).

]

(Make sure you understand these lines.) Note also that for all t, At

is independent of Yi,t, i = 1, . . . , K.

(b) (5 points) Show that if n > cK, then

E[Ti(n)] = c+ (n−Kc)P
(
µ̂i > max

j=1,...,K, j 6=i
µ̂j

)
Hint: If n > cK, every arm is pulled deterministically c times.
Afterward, an arm is only pulled if it is the one with the maximum
sample mean µ̂i.

(c) (5 points) Suppose, without loss of generality, that the optimal arm
(the arm with the highest mean µ∗) is the first arm, i.e. µ∗ = µ1.
Show that for any sub-optimal arm i:

P
(
µ̂i > max

j=1,...,K;j 6=i
µ̂j

)
≤ P (µ̂i > µ̂1)

Hint: Think about the two events that we are looking at the probabilities
of. One of these events is a subset of the other.
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(d) (10 points) Putting together our results from the last few parts, we
have shown that:

E[Ti(n)] ≤ c+ (n−Kc)P (µ̂i > µ̂1) .

Using the Hoeffding bound, show that

P (µ̂i > µ̂1) = P

(
1

c

c∑
s=1

Yi,K(s−1)+i >
1

c

c∑
s=1

Y1,K(s−1)+i

)
≤ exp

(
− c∆2

i

2(b− a)2

)

(Hint: The Hoeffding bound applies to random variables Z1, . . . , Zm

where each random variable Zj is bounded between uj and lj for
j = 1, . . . ,m. The bound then states that

P

(
m∑
j=1

Zj − E

[
m∑
j=1

Zj

]
> t

)
≤ exp

(
− 2t2∑m

j=1(uj − lj)2

)
.

Recall that Yi,K(s−1)+i is the reward when the i-th arm is pulled the
s-th time, and Yi,K(s−1)+i − Y1,K(s−1)+i is bounded between b− a and
a− b with mean µi − µ1.)

(e) (10 points) Putting our results together, we have that:

E[Ti(n)] ≤ c+ (n−Kc) exp

(
− c∆2

i

2(b− a)2

)
.

Suppose you knew the minimum sub-optimality gap,

∆ = min
i>1

∆i.

Then for each sub-optimal arm i = 2, . . . , K, we further have

E[Ti(n)] ≤ c+(n−Kc) exp

(
− c∆2

2(b− a)2

)
≤ c+n exp

(
− c∆2

2(b− a)2

)
,

where we upper-bounded n−Kc by n.

Solve for a value of c which guarantees that:

exp

(
− c∆2

2(b− a)2

)
≤ 1

n
.

For this number of exploratory pulls c, what is the upper bound on the
pseudo-regret? Your answer should be in terms of n, a, b,∆,∆i. Does
this bound grow linearly in n, or does it do better (is it sublinear)?

Hints: Use the pseudo-regret decomposition you derived in Part (a)
and plug in the upper bound on E[Ti(n)] shown above. Also note
that ∆1 = µ∗ − µ1 = µ1 − µ1 = 0.


