
DS 102 Homework 3

If you are handwriting your solution please make sure your answers are legible,
as you may lose points otherwise.
Data science is a collaborative activity. While you may talk with others about
the homework, please write up your solutions individually. If you do discuss
the homework with others, please include their names on your submission.

Due on Gradescope by 9:29am, Thursday March 5th, 2020

1. (20 points) Here we’ll work through an example of maximum a posteriori (MAP) esti-
mation, and look at one interpretation of MAP linear regression weights.

Suppose x1, . . . , xn ∈ Rd are fixed feature vectors. We assume the linear Gaussian model,
where we observe

yi = β>xi + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent of each other, and β ∈ Rd and σ2 > 0 are unknown.

Let y = (y1, . . . , yn), ε = (ε1, . . . , εn), and let X denote the matrix whose i-th row is
equal to xi. Using this notation, we have

y = Xβ + ε.

We model the regression weights as a random variable with the following prior distribu-
tion:

β ∼ N(0, σ2
β · I).

where σ2
β > 0 is hyperparameter we choose. That is, every entry of β is distributed as

N(0, σ2
β) and the entries are independent.

(a) (8 points) Write the posterior distribution for β after observing the data, p(β|X, y).
It’s fine to just derive an expression that the posterior is proportional to. (Hints:
use Bayes’ rule and the probability density functions of multivariate Gaussians.
Also use the fact that for a vector z, zT z = ‖z‖22, where ‖z‖2 is the Euclidean norm
of z.)

(b) (8 points) Show that the MAP estimator of β,

β̂MAP := arg max
β

p(β|X, y)

is also the solution to the regularized least-squares problem,

arg min
β
‖Xβ − y‖22 + λ‖β‖22

for λ = σ2

σ2
β
. (Hints: use the expression for the posterior you derived in the previous

part, and the fact that taking the logarithm of a function does not change its
argmax. That is, arg maxβ f(β) = arg maxβ log f(β). Multiplying a function by a
constant also does not change its argmax.)



(c) (4 points) In the regularized least-squares problem, λ is the regularization term:
large values of λ penalize weight vectors with large norms. Since β̂MAP is the
solution to the regularized least-squares problem with λ = σ2

σ2
β
, explain how our

modeling decisions (i.e., our choice of σ2
β) influences our solution β̂MAP .

2. (30 points) EM for Poisson Mixture Model

Suppose CalTrans wants to study the probability of traffic accidents in the Bay Area
so it can improve highway infrastructure. They collect a dataset X = (x1, ..., xn) of the
number of accidents that occur in a day, for n days.

We want to model each count as being drawn from a Poisson distribution. However, we
believe the mean of that Poisson depends on whether that day is sunny, raining, or snow-
ing, which happens with some probabilities π1, π2, π3 such that

∑
j πj = 1, respectively.

That is, we model each count as follows:

zi ∼ Multinomial(1, (π1, π2, π3))

xi ∼ Poisson(λzi)

where zi is a categorical variable that determines whether it is is sunny, raining, or
snowing, and λ1, λ2, λ3 are the means of the Poisson distributions when it is sunny,
raining, and snowing, respectively. Assume the zi, and therefore the counts xi, are
independent of each other.

Unfortunately, CalTrans did not record the weather zi corresponding to each count, so
zi is an unobserved latent variable. In this problem, we’ll work out how to estimate
z = (z1, . . . zn), π = (π1, π2, π3), and λ = (λ1, λ2, λ3) using expectation-maximization
(EM).

(a) (3 points) Suppose we did know zi for count xi. Given the parameters λ, derive
the likelihood of observing xi conditioned on zi, P(xi|zi = j, λ).

(b) (2 points) Given the parameters π and λ, derive the joint likelihood P(xi, zi = j |
π, λ). Use your result from the previous part.

(c) (5 points) Before we dive into EM, first write down the likelihood P(x | λ, π). (Hint:
use the assumption that the xi are independent from each other, and your result
from the previous part.)

(d) (10 points) The expression you derived in the previous part has no closed-form
solution for the maximum likelihood estimates (MLEs) of λ, π. We now turn to EM
to approximate the MLEs of λ, π.

(i) For the E-step at iteration t, we have our current estimates λ
(t)
1 , λ

(t)
2 , λ

(t)
3 and

π
(t)
1 , π

(t)
2 , π

(t)
3 . Derive the posterior distribution of zi conditioned on xi and these

current estimates, P(zi = j | xi, λ(t), π(t)). We’ll denote this posterior distribution

q
(t)
i (zi), which is a multinomial distribution since zi is a categorical random variable.

(Hint: Use Bayes’ theorem.)

Page 2



(ii) Your result q
(t)
i (zi) is the posterior over a single zi given xi. What is the posterior

over all z = (z1, . . . , zn) given all x = (x1, . . . , xn), P(z | x, λ(t), π(t))? This is the

q(t)(z) that results from the E-step. (You can write it in terms of q
(t)
i (zi).)

(e) (10 points) To derive the M-step, using the independence assumptions we have

π(t+1), λ(t+1) = arg max
λ,π:

∑
j πj=1

Ez∼q(t) [logP(x, z | λ, π)] (1)

= arg max
λ,π:

∑
j πj=1

Ez∼q(t) [log
n∏
i=1

P(xi, zi | λ, π)] (2)

= arg max
λ,π:

∑
j πj=1

Ez∼q(t) [
n∑
i=1

logP(xi, zi | λ, π)] (3)

= arg max
λ,π:

∑
j πj=1

n∑
i=1

Ez∼q(t) [logP(xi, zi | λ, π)] (4)

= arg max
λ,π:

∑
j πj=1

n∑
i=1

E
zi∼q

(t)
i

[logP(xi, zi | λ, π)] (5)

= arg max
λ,π:

∑
j πj=1

n∑
i=1

E
zi∼q

(t)
i

[logP(xi | zi)P(zi | π)] (6)

= arg max
λ,π:

∑
j πj=1

n∑
i=1

E
zi∼q

(t)
i

[log

(
πzi

λxizi
xi!

exp(−λzi)
)

]. (7)

It’s a good check to make sure you understand this derivation. Importantly, note
that due to independence, we just need to consider the expectation with respect to
the posterior q

(t)
i over one zi (which you derived in Part d(i)) instead of over all z

at once. Also note that in the maximization, we need to satisfy the constraint that∑3
j=1 πj = 1 in order to have valid probabilities.

(i) We can solve for π(t+1), λ(t+1) by taking the partial derivatives of

f(π, λ) = Ez∼q(t) [logP(x, z | λ, π)] =
n∑
i=1

E
zi∼q

(t)
i

[log

(
πzi

λxizi
xi!

exp(−λzi)
)

]

with respect to components λj and πj, and setting them to zero.

Derive the partial derivative ∂f(π,λ)
∂λj

and set it to zero. What is λ
(t+1)
j ? (Hints: You

can pass the derivative through both the sum and the expectation. You can also
use the fact that E

zi∼q
(t)
i

[1(zi = j)] = q
(t)
i (zi = j).)

(ii) Since we need to satisfy the constraint that
∑3

j=1 πj = 1, we can’t just set
∂f(π,λ)
∂πj

to zero to get π
(t+1)
j . Instead, we need to use Lagrange multipliers to solve

the constrained optimization problem. This turns out to be equivalent to setting
∂f(π,λ)
∂πj

− n = 0.

Derive the partial derivative ∂f(π,λ)
∂πj

. Using ∂f(π,λ)
∂πj

− n = 0, what is π
(t+1)
j ?
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