
DS 102 Discussion 8
Monday, April 6, 2020

1. Generalized Linear Models

In this discussion, we’ll review some of the time-series models presented in Lecture 22
(April 2) and see how they are examples of generalized linear models (GLMs). As
their name implies, GLMs generalize the linear regression problem we know and love to
model situations where 1) the distribution of the output given the input is not simply
Gaussian and 2) the mean of that distribution is not simply a linear function of the
input.

A quick refresher on the linear regression model we’re familiar with: we have d-dimensional
input T , and the scalar output X is given by

X = βTT + ε (1)

where d-dimensional β are parameters, and ε ∼ N (0, σ2) is a noise term that may
capture, for example, measurement noise or variance due to other unobserved factors
(we use X to denote the output, to be consistent with Section 22.4 of Lecture 22).
Equivalently, we can state that the conditional distribution of X given T is:

X | T ∼ N (βTT, σ2). (2)

There are two key types of assumptions in (2) that GLMs relax.

1. Output distribution. In the above linear regression model, we assumed that
given the input, the output variable is distributed as a Gaussian random variable.
Furthermore, we assumed that the input only determines the mean of this condi-
tional distribution. That is, we have

X | T ∼ N (µ(T ), σ2I) (3)

where µ(T ) := E[X | T ] is called the mean function because it describes, as a
function of T , the mean of the conditional distribution of X given T .

2. Link function. In the above linear regression model, we further assumed that the
mean function is simply a linear function of the input: µ(T ) = βTT .

To relax these two assumptions and model more interesting phenomena, for a GLM we
need to specify two components:

1. Output distribution. No longer shackled to the Gaussian, we can pick other
distributions to model the conditional distribution of the output X given the input
T , depending on what is appropriate for the application. However, as in the linear
regression case, we keep the assumption that the input only determines the mean
E[X | T ] of that distribution, and does not affect any other parameters.



2. Link function. To describe the mean function, we can pick any invertible function
of a linear function of the inputs. That is, we have

g(µ(T )) = βTT (4)

where g is called the link function. (In linear regression, the link function is just
the identity.)

We’ll now review an application similar to the one in Section 22.4 of Lecture 22, and
show how it can be cast as a GLM. Let Xt, the observed output variable, denote the
number of COVID-19 hospitalizations on day t. We’d like to model the relationship
between the output Xt and the input t.

(a) As noted in the lecture, epidemiology tells us that in some settings, exponential
growth for the mean of Xt is reasonable:

E[Xt] = α exp(γt). (5)

Find an appropriate link function. That is, as shown in (4) find a function of the
mean function that is equivalent to just a linear function of the input.

(b) To complete the specification of the GLM, we need an output distribution. Since
we are modeling integer-valued Xt, what are natural choices for the conditional
distribution of XT given T?

(c) Show how the GLM we’ve described is equivalent to the model in Section 22.4 of
Lecture 22:

Xt ∼ Poisson(Zt) (7)

Zt+1 = (1 + r)Zt. (8)

That is, express α and γ in our GLM as functions of r and Z0.

2. GLM for continuous data. The examples in Lecture 22 involved discrete data. That
is, the observed output variable Xt was always a positive integer (e.g., number of hospi-
talizations on day t). However, what happens if Xt can be any real number? Then the
Poisson GLM wouldn’t make much sense as a model.

Consider the following example of a time series with a continuous output. Suppose a
rocket has been launched in Florida, and we in California start observing the rocket at
time t = 0. We want to measure the rocket’s distance from Earth at some time t in the
future. At each time step, we obtain a noisy measurement of this distance.

Let β0 ∈ R be the initial distance from Earth (in miles) of the rocket when we started
observing it at time t = 0. Suppose the rocket is moving away from Earth at a constant
rate of β1 ∈ R miles per time step t. Let Xt denote our observation of the rocket’s
distance from Earth, which is noisy due to weather, measurement error, etc. Assume
that for all t our observation noise is normally distributed with a standard deviation of
σ = 50 miles.
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(a) What is the distribution of Xt, the observed distance of the rocket at time t? Write
this distribution in terms of β0, β1, and σ.

(b) Suppose we don’t know β0 or β1, and we observe X0, X1, ..., XT positions of the
rocket from California. Our goal is to predict the future positions of the rocket by
estimating β0 and β1. First, we’ll cast our model as a GLM with output Xt and
input t. What is the output distribution and link function?

(c) Given the data X0, X1, ..., XT , how might we solve for β0 and β1 in the above GLM?
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