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Multi-Armed Bandits: UCB and Hoeffding’s inequality

In the last lecture, we began talking about multi-armed bandits. In a multi-armed bandit
problem, we consider having K options to choose from. We refer to these options as “arms”.
Associated with each arm is a probability distribution over rewards. Our goal is to figure
out, and draw rewards from, the arm with the highest expected reward.

Initially, these reward distributions are unknown. However, when we choose an arm,
referred to as “pulling an arm”, we receive a reward sampled from the corresponding reward
distribution. We want to develop an algorithm for which arm to pull at each time step, so
that we can efficiently figure out which arm gives the highest expected reward.

One algorithm for deciding which arm to pull is the Upper Confidence Bound (UCB)
algorithm presented in lecture. If we assume that the reward of each arm is bounded (e.g.
the slot machine returns between $0 and $100), then we proved in lecture that the UCB
algorithm has bounded regret over time.

One thing that we didn’t do in lecture is actually derive where the UCB algorithm came
from. In this discussion, we will derive the UCB algorithm by leveraging the Hoeffding
bound. As we did in lecture, we will assume that the reward of each arm is bounded.

1. Suppose there are K arms, A = {1, 2, ..., K}. Each arm a ∈ A has its own reward
distribution Xa ∼ Pa with mean µa = E[Xa]. We do not know µa, but we would like
to efficiently find the arm with the maximum µa by creating an algorithm that balances
exploration of the arms with exploitation. The efficiency of the algorithm is measured
by a quantity known as regret, which measures how well the algorithm performs in
expectation against an “oracle” that knows the arm with highest mean and always pulls
it.

We will now derive the upper confidence bound that yields the UCB algorithm we saw
in the last lecture.

Define the number of times arm a has been pulled, up to and including time t, as Ta(t).
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For any arm a, to find an upper confidence bound for µa given Ta(t) samplesX
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we want to find a value Ca(Ta(t), δ) such that

P (µa < µ̂a,Ta(t) + Ca(Ta(t), δ)) > 1− δ (1)

where µ̂a,Ta(t) is the sample mean of the rewards from arm a:

µ̂a,Ta(t) =
1

Ta(t)

Ta(t)∑
i=1

X(i)
a .

In words, Equation (??) says that with probability at least 1 − δ, the true mean µa is
no bigger than the sample mean µ̂a,Ta(t) plus the term Ca(Ta(t), δ).

(a) Suppose that you know that the reward of any arm is between 0 and 1. That is:

Xa ∈ [0, 1]

Construct an upper confidence bound for the mean of arm a, after observing t
samples from arm a.

(b) Suppose we set δ = 1
t3

. This controls the probability that the true mean µa is greater
than our upper confidence bound Ca(Ta(t), δ) on the estimated mean µ̂a,Ta(t). What
rule does the UCB algorithm use to choose an arm At at each iteration t?

Page 2


