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1 Background on instrumental variables

In our lectures on causal inference, we’ve looked at two extremes on how to infer treatment
effects: the randomized trial where we have complete control of the treatments and can
perform do-interventions (as in Lab 6), and the observational study where we have no control
over the treatments, but try to estimate treatment effects from data we observe (using the
adjustment formula and propensity scores as in Lecture 14). Instrumental variables are a
strategy that falls somewhere in between.

Suppose we are interested in determining whether reading more books causes students’
SAT test scores to improve. It’s not always a good idea to conduct a randomized trial, since
we may not ethically or practically be able to force people to read or not read. On the other
hand, if we were to just look at observational data, there might always be an unobserved
confounding variable that interferes with our ability to infer the causal effect of reading.
For example, one confounder might be a student’s family’s income, since it changes the
educational resources (including both reading material and standardized test preparation) a
student had growing up.

As something in between those two approaches, we might employ encouragement design.
In this setting, we randomly select people and encourage them to read by organizing a
“readathon” at their school. This encouragement, which we call an instrumental variable
(IV), needs to satisfy two properties in order to use the method we develop today:

1. It has a causal effect on the treatment variable (here, how much a student reads).

2. It has no direct effect on the outcome variable (here, a student’s SAT score), only
indirectly through the treatment variable. (This condition also implies the IV has no
effect on the confounder.)

Organizing a readathon has no effect on a student’s SAT score directly or on a student’s
household income, but has a causal effect on the number of books a student will read.

Our encouragement design results in a dataset of n students, with the following variables:

• Y (i) is the SAT score of the the i-th student.

• X(1)
1 is how many books the i-th student read over the last month.

• Z(i) ∈ {0, 1} indicates whether or not a readathon was organized at the i-th student’s
school (instrumental variable).

Finally, let X
(i)
2 denote the i-th student’s family’s income (a confounder), which we do not

observe.
In the following problems, we will develop a method for using Z to estimate the causal

effect of X1 on Y , even though we know they are confounded by X2. See Figure 1 for the
causal graphical model of this setup.
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Figure 1: A causal graphical model showing the instrumental variable setup. The instru-
mental variable Z does not affect the confounder X2 (income), nor does it affect the outcome
Y (SAT score), except through the treatment X1 (number of books read).

2 Instrumental variables and two-stage least squares

(2SLS)

How can we use an instrumental variable Z to infer the causal effect of X1 on Y ? One
approach is to model the causal relationship between Y and X1 as a linear regression problem.

Let’s assume that the i-th student’s SAT score is generated through the following linear
model:

Y (i) = β1X
(i)
1 + β2X

(i)
2 + ε(i),

where β1, β2 are unknown coefficients, and ε(i) ∼ N (0, σ2) is noise.

Our goal is to accurately estimate β1, which tells us how Y (i) varies with X
(i)
1 .

1. Before we incorporate the instrumental variable, let’s first see what can go wrong when
we don’t employ encouragement design and include instrumental variables in the linear
regression problem.

Suppose we observe X
(i)
1 but not the confounding variable X

(i)
2 . We decide to run a

linear regression model on the observed variable X1 only. Define the vectors

X1 =


X

(1)
1

X
(2)
1
...

X
(n)
1

 ; X2 =


X

(1)
2

X
(2)
2
...

X
(n)
2

 ; Y =


Y (1)

Y (2)

...
Y (n)

 .

We then compute the least squares estimate of β1,

β̂1 = (X>1 X1)
−1X>1 Y.

Assuming that n = 1 for simplicity, can you think of a plausible situation where β̂1 is a
biased estimator?
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2. Now suppose we employ encouragement design: we incentivize a randomly chosen subset
of students to read more books by organizing a readathon at their school. Let

Z =


Z(1)

Z(2)

...
Z(n)

 ,
where Z(i) = 1 if the i-th student’s school had a readathon and Z(i) = 0 otherwise.

In this problem, we use our intuition to develop an estimator of the effect of X1 on Y .
Informally, we can think of β1 as the rate of change of Y (i) with respect to X

(i)
1 . Then

it follows from the chain rule that

dY (i)

dX
(i)
1

=
dY (i)/dZ(i)

dX
(i)
1 /dZ(i)

.

An intuitive estimator of β1 is then to estimate both the denominator and numerator of
this fraction:

β̂IV =
(Z>Z)−1Z>Y

(Z>Z)−1Z>X1

.

Show that
β̂IV = (Z>X1)

−1Z>Y.
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3. To formalize the estimator we derived in the previous problem, we now consider the
two-stage least squares estimator (2SLS). This estimator uses the instrumental variable
Z to get a better estimate of the relationship β1 between X1 and Y , and has two stages:

1. Find the OLS estimate with X1 as the output and Z as the input:

α̂ = (Z>Z)−1Z>X1.

2. Find the OLS estimate with Y as the output and X̂1 = Zα̂ as the input:

β̂2SLS = (X̂>1 X̂1)
−1X̂>1 Y.

Show that β̂2SLS = β̂IV .
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