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The past few lectures have looked at how to perform Bayesian inference using Markov
Chain Monte Carlo sampling methods, such as Gibbs sampling. Today, we’ll practice deriving
one iteration of Gibbs sampling for the Gamma-Poisson model.

The goal of Bayesian inference is to get the posterior distribution of the parameters given
the data, P(θ | X). Often this is difficult to derive in closed form, so instead we’ll try to
sample from it. However, sampling from the posterior over all the parameters θ is also often
difficult. The main insight behind Gibbs sampling is that it can be much easier to sample the
posterior over just a single parameter, P(θi | X, θ−i) (where we use the index −i to mean all
indices except for i). Gibbs sampling then iterates through each parameter θi and samples
from P(θi | X, θ−i). This loop is repeated, each time conditioning on the newly sampled
values.

Iterating through each parameter θi and sampling from P(θi | X, θ−i) is not the same
thing as sampling from P(θ | X). However, the good news is that given enough iterations,
the former converges to the latter.

1. Gibbs sampling for Gamma-Poisson model.

Consider the hierarchical Bayes model where

β ∼ Gamma(m,α)

θi | β ∼ Gamma(k, β), i = 1, . . . , n

Xi | θi ∼ Pois(θi), i = 1, . . . , n,

where the θi are independent of each other and the Xi are independent of each other.
The β and θi are unknown parameters, and m, α, and k are fixed and known.

We’d like to infer the parameters β and the θ from the data X. That is, we’d like to
sample from the posterior distribution P(β, θ | X) using Gibbs sampling. This entails
deriving the posterior of each parameter, conditioned on the data and all the other
parameters.

(a) We’ll start with β. Derive P(β | θ1, . . . , θn, X1, . . . , Xn).

(b) Next, we’ll look at each θi. Derive P(θi | β, θ1, . . . , θi−1, θi+1, . . . , θn, X1, . . . , Xn)

(c) Using the posteriors you derived in the last two parts, write out the algorithm for
the Gibbs sampler.


