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1. What does it mean for the score function of a decision rule to be calibrated? Calibration
is a way of assessing the quality of your decision rule when you’re interested in the
probabilities that a rule assigns to decisions, not just the decisions themselves. For
example, when you check the weather and it says there’s a 20% chance of rain, you
expect that 20% to be a meaningful number. That is, 20% of the time it says there is
a 20% chance of rain, it actually rains. From weather, election, and sports forecasts to
medical prognoses, it’s usually the quality of these predicted probabilities that we care
most about.

To define calibration, we consider decision rules δ(X) that threshold score functions
R(X) that take on values between 0 and 1:

δ(X) = 1[R(X) ≥ γ].

As usual, we let Y ∈ {0, 1} denote the true binary label corresponding to X. We call
R(X) calibrated when, for all values r ∈ [0, 1], we have

P(Y = 1 | R(X) = r) = r.

Decision rules can achieve high accuracy (or any desirable metric from the confusion
matrix) with wildly uncalibrated score functions. If the same weather forecast just
rounded its predicted probability of rain to 0% or 100%, as a decision rule for whether
it rains, it would achieve the same confusion matrix as before. However, its predicted
probabilities would be uncalibrated and therefore useless.

We’ll look more closely at what it means (and doesn’t mean) for a decision rule to be
calibrated.

(a) Recall that the conditional expectation E[X|Y ] is the decision rule that minimizes
the Bayes risk for squared-error loss. Suppose we use the conditional expectation
as our score function:

R(X) = E[Y |X]

Is the score function calibrated?

(b) Consider the following table of data X, labels Y , and scores R(X). Is this score
function calibrated on this dataset? Does it seem like a good score function for a
decision rule, in terms of its false positive and false negative rates?



X Y R(X)
0 0 1/2
0 0 1/2
1 1 1/2
1 1 1/2

(c) For any particular value of X = x, do we havex

P(Y = 1 | R(X) = 1/2, X = x) = 1/2?

(d) Let’s return to the conditional expectation R(X) = E[Y |X]. For any particular
value of X = x, do we have

PX,Y (Y = 1 | R(X) = r,X = x) = r?

2. Linear Regression and Ordinary Least Squares: For this question, we will review
the Ordinary Least Squares (OLS) estimator for linear regression. In addition to deriving
the OLS estimator, we will add on a new probabilistic interpretation by introducing the
idea of an empirical distribution.

Setup: We observe n data points

x(1), ..., x(n) ∈ Rd,

and corresponding outputs
y(1), ..., y(n) ∈ R.

We assume that
y(i) = 〈β∗, x(i)〉+ ε(i),
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where β∗ is some true parameter that we want to estimate, and ε(i) represents some
random error.

The OLS estimator is the estimator β̂ that minimizes the sum of squared residuals, where
each residual is the difference between each true y(i) and the estimated 〈β̂, x(i)〉. Note
that the random errors ε(i) are not taken into account in the residuals – this means that
the OLS estimator might be bad if the ε(i) are not zero-mean.

(a) Write the minimization problem that gives us the OLS estimator.

(b) Solve the minimization problem by taking the derivative with respect to β and
setting that equal to 0. Recall from the matrix cookbook that the derivative with
respect to a vector β of 〈β, x〉 is ∂

∂β
〈β, x〉 = x. Also recall that 〈β, x〉 = βTx = xTβ.

(c) Sample means and empirical distributions: Suppose we have some distribu-
tion p, and we have n random samples from that distribution, x(1), ..., x(n) ∼ p.
Then the sample mean is defined as

1

n

n∑
i=1

x(i).

Another way to describe the sample mean is an expectation over an empirical
distribution. Specifically, if p̂n is a distribution of a random variable x where x is
equal to each of the samples x(i) with equal probability 1

n
, then

Ex∼p̂[x] =
1

n

n∑
i=1

x(i).

We call p̂n an empirical distribution of the original distribution p.

Let p̂n be the empirical distribution over the data points (x(1), y(1)), (x(n), y(n)) of
the underlying distribution that the data points were truly drawn from. That is,
for a random variable (x, y) ∼ p̂n, (x, y) = (x(i), y(i)) with probability 1

n
. Using the

solution to part (b), write the OLS estimator β̂ in terms of expectations over p̂n.
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