Lecture 20
Theoretical Analysis Of Bandit AlGorithms

Setup: K coins
success probabilities: $P_{1} \ldots P_{k}$
T rounds. (egg: $\left.K_{p}=9,1, F_{1}=0.2, \ldots, p_{k}=0.9\right)$
Each round: You pick a coin for tossing $1 \$$ if heads $\$ 0$ if tails
Given an "algorithm";
Reward $(t)=\begin{aligned} & \text { Money made after } \\ & t \text { rounds } .\end{aligned}$ number of rewards

$$
\begin{aligned}
& \text { number of rewards } \\
& \text { Regret }(t)=0.9 t-\text { Reward }(t) \\
& =t \cdot \max _{a} p_{a}-\text { Reward }(t)
\end{aligned}
$$

Averaged Regret (t) time

$$
\begin{aligned}
& =\mathbb{E}(\operatorname{Regret}(t))(\operatorname{Reward}(t)) \\
& =t \cdot \max _{a} p_{a}-\mathbb{E}(\text { with } t
\end{aligned}
$$

Averaged Regret increases with t Averaged Regret $(t+1)$

$$
\begin{aligned}
= & (t+1) \max _{a} p_{a}-\mathbb{E}[\operatorname{Reward}(t+1)] \\
= & t \max _{a} p_{a}+\mathbb{E}(\operatorname{Reward}(t)) \\
& +\max _{a} p_{a}-\mathbb{E}[\operatorname{Reward}(t+1) \\
& \max _{a} \underbrace{\left.p_{a}-\mathbb{R} \text { award }(t)\right]}]
\end{aligned}
$$

So Aver Regret $(t+1) \geqslant$ Averaged Regret (4

Example (1) $K=9$

$$
\begin{aligned}
& \text { see (1) } K=9 \\
& p_{1}=0.1, p_{2}=0.2, \ldots, p_{8}=0.8, p_{9}=0.9 \\
& p_{1}
\end{aligned}
$$

Algorithm: At each round, picks one of coin 8 or coin 9 at random.
On: What is the Averaged Regret of this Algorithm?
Averaged Regret (t)
$=t \max _{a} P_{a}-\mathbb{E}\left(\right.$ Reward $\left._{t}\right)$

$$
\begin{aligned}
& =t \max _{a} P_{a}-\mathbb{E} \sum_{s=1}^{t} I\left\{\text { success in } s^{\text {th }} \text { round }\right\} \\
& =t(0.9)-\mathbb{E} \\
& =t(0.9)-\sum_{s=1}^{t} \mathbb{P}\left\{\text { success in } i^{\text {th }} \text { round }\right\} \\
& \left.=1(0.8)+\frac{1}{2}(0.9)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =t(0.9)-\sum_{\beta=1}^{1} \\
& =t(0.9)-\sum_{\beta=1}^{1}\left[\frac{1}{2}(0.8)+\frac{1}{2}(0.9)\right]
\end{aligned}
$$

$$
\begin{aligned}
=t(0.9)-t(0.85) & =t(0.9-0.85) \\
& =t(0.05)
\end{aligned}
$$

Linear Regret Algorithm

Example 2:
In round t :

$$
\begin{aligned}
& 0.8 \operatorname{coin} \rightarrow \rho_{t} \\
& 0.9 \operatorname{coin} \rightarrow 1-\rho_{t}
\end{aligned}
$$

ρ_{t} : decreases with t.

$$
\text { Ce.g } \left.\rho_{t}=\frac{1}{t}\right)
$$

Averaged Regret for thar algorithm. $=t(0.9)-\mathbb{E} \sum_{s=1}^{t} I\{$ success in Round $s\}$ $=t(0 . q)-\sum_{s=1}^{t} \mathbb{P}$ (success in Round s)

$$
\begin{aligned}
& =t(0.9)-\sum_{s=1}^{t} \\
& =t(0.9)-\sum_{s=1}^{t}\left[(0.8)\left(e_{s}\right)+(0.9)\left(1-\rho_{s}\right)\right]
\end{aligned}
$$

$$
=t(0.9)-\sum_{s=1}^{t}\left[0.9-0.1 \rho_{s}\right]
$$

$$
=0.1 \sum_{s=1}^{t} \rho_{s}
$$

with $e_{s}=\frac{1}{s}$
Averaged Regret

$$
\begin{aligned}
& \text { R Regret }\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{t}\right) \\
& =0.1(\underbrace{1})
\end{aligned}
$$

$$
\sim(0.1)(\log t)
$$

If $\rho_{s}=\frac{1}{s^{2}}$
Averaged Regret $=0.1 \sum_{s=1}^{t} \frac{1}{s^{2}}$
\leq Constant.
Uniform Confidence Bound.
(1) Basic Exploration $(m=1)$
(2) In Round (t),

$$
\begin{aligned}
& {\left[T_{a}(t)=\right.\text { \# times coin a is picked }} \\
& X_{a}(t)=\begin{array}{l}
\text { \# successes from coin a } \\
\text { in the first } t \text { round }
\end{array} \\
& \text { in the first } t \text { rounds. } \\
& U C B_{a}(t, \epsilon)=\frac{X_{a}(t)}{T_{a}(t)}+\sqrt{\frac{\log (/ \varepsilon)}{2 T_{a}(t)}} \\
& \cup \subset B_{a}(t-1, \delta)
\end{aligned}
$$

pick the coin a which maximizes this.

$$
\underset{\rightarrow}{\text { Idea }} \mathbb{P}[p_{a} \leq \underbrace{\cup C B_{a}(t, \delta)}] \geqslant 1-\delta
$$

Hoeftding for Binomial

$$
x \sim \operatorname{Bin}(n, p), t \geqslant n p
$$

$$
\mathbb{P}(x \geqslant t) \leqslant \underbrace{\exp \left[-\frac{2(t-n p)^{2}}{n}\right]}_{=\delta}
$$

Solve for t :

$$
\begin{gathered}
t=n p+\sqrt{\frac{n}{2} \log \frac{1}{\delta}} \\
\frac{t}{n}=p+\sqrt{\frac{\log 1 / \delta}{2 n}} \\
\mathbb{P}\left[x \geqslant n p+\sqrt{\frac{n}{2} \log \frac{1}{\delta}}\right] \leqslant \delta \\
\mathbb{P}\left[p \leqslant \frac{x}{n}-\sqrt{\frac{\log 1 / \delta}{2 n}}\right] \leqslant \delta \\
\mathbb{B}\left[p>\frac{x}{n}-\sqrt{\frac{\log 1 / \delta}{2 n}}\right] \geqslant 1-\delta
\end{gathered}
$$

$L C B$ (Lower Confidence Bound)
UCB from Hoeffling:

$$
\begin{aligned}
& C B \text { from Hoeffding: } \\
& \mathbb{P}\left[p<\frac{x}{n}+\sqrt{\frac{\operatorname{los} 1 / \delta}{2 n}}\right] \geqslant 1-\delta
\end{aligned}
$$

UCB Bandit Algorithm
After $t-1$ rounds, consider the maximum possible value for each pa subject to a given prob.
$P_{a} \rightarrow \begin{gathered}T_{a}(t-1) \\ X_{a}(t-1)\end{gathered} \frac{x_{a}(t-1)}{T_{a}(t+1)}+\sqrt{\frac{\sqrt{2-1 / k}}{2 \sigma_{a}(t 1)}}$
Qu: What is the Averaged Regret of UCB Bandit Algorithm?
Ans: Loganthmic. $\left(\delta_{t}:=\frac{1}{t^{3}}\right)$
Sketch of proof:

$$
\begin{aligned}
& \text { etch of proof: } \\
& p_{1}=0.1, p_{2}=0.2, \ldots, p_{8}=0.8, p_{9}=0.9 \\
& \text { what are the }
\end{aligned}
$$

In round t, what are the chances of picking coin 8 over coin 9.
Intuition: This should be small when

$$
\begin{aligned}
& \frac{\text { Intuition: }}{t \text { il large }} \\
& \leq \mathbb{P}\left[U C B(t-1,8)>U C B_{9}(t-1,8)\right] \\
& \mathbb{P}\left[\begin{array}{l}
\frac{x_{8}(t-1)}{T_{8}(t-1)} \\
+\sqrt{\frac{\log 1 / 8}{2 T_{8}(t-1)}} \\
\left.>\frac{x_{9}(t-1)}{T_{9}(t-1)}+\sqrt{\frac{\log 1 / 8}{2 T_{9}(t-1)}}\right]
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \mathbb{P}\left[U C B_{8}(t-1, \delta) \geqslant 0.9\right] \\
& =\mathbb{P}\left[\frac{X_{8}(t-1)}{T_{8}(t-1)}+\sqrt{\frac{\log 1 / 8}{2 T_{8}(t-1)}} \geqslant 0.9\right] \\
& =\mathbb{P}\left[\frac{X_{8}(t-1)}{T_{8}(t-1)}-0.8 \geqslant 0.9-\frac{9-8}{\log 1 / 8}\right. \\
& =\mathbb{P}\left[\frac{X_{8}(t-1)}{T_{8}(t-1)}-0.8 \geqslant \sqrt{\frac{\log 1 / 8}{2 T_{8}(t-1)}}\right] \\
& 0.1 \geqslant 2 \sqrt{\frac{\operatorname{los} 1 / 8}{2 T_{8}(t-1)}} \\
& \Leftrightarrow T_{8}(t-1) \geqslant \frac{2 \log 1 / 8}{(0.1)^{2}}
\end{aligned}
$$

$$
\leq \delta
$$

δ : confidence level:
\mathbb{P} (picking 0.8 coin instead of 0.9 when $\left.T_{8}(t-1) \geqslant \frac{2 \log ^{1 / 8}}{(0.1)^{2}}\right]$

$$
\leq \delta
$$

Suppose $8=\frac{1}{t}$
\Rightarrow Averaged. $\quad \underset{\text { Regret }}{ } \quad(\log T) \times$ constants

General Bandit Setup.

$$
\begin{array}{ll}
K \text { arms } & \text { arms }=\text { coins } \\
\text { pull }=\text { pick }
\end{array}
$$

$$
\text { pull }=\text { pick }
$$

Means: $\mu_{1}, 1, \mu_{k}$ (you want larger μ)
Reward: For arm a: Reward distribution with mean μ_{a} (eeg. coin case: Reward distribution)
$=\operatorname{Ber}\left(P_{a}\right)$
Mores generally: Reward Liston: $N(\mu, 1)$

Reward $(t)=\sum_{s=1}^{t}$ Reward in round s.
$\operatorname{Regret}(t)=t \cdot \max _{a} \mu_{a}-\operatorname{Reward}(t)$
Averaged. Regret $(t)=\mathbb{E}(\operatorname{Regret}(t))$
(1) UCB Algorithm:

Assume Reward Distribution has bounded support: $[\alpha, \beta]$
Hoeftding (General) to get UCB.
(2) Thompson Sampling

MJ Might be diffuclt to choose prior. (Natural to try Uniform)
Does not use specific formula for the Reward Distribution.

