LECTURE 19

Last Lecture
Inequalities for Tail Probabilities.
X:
$$r.V$$

 $P\{X \ge t\}$
 $f t \ge M$
 $right + tail probability$
Chernoft
 $P\{X \ge t\}$
 $right + tail probability$
Chernoft
 $P\{X \ge t\}$
 $right + tail probability$
 $right + tail probability
 $right + tail probability$
 $right + tail probability$
 $right + tail probability
 $right + tail probability$
 $right + tail probability$$

(2) Hoeffding Bound!

$$P[X > t] \leq exp[-an(n-b)^{2}]$$

 $Bin(n)P t = exp[-a(t-n)^{2}] = S$
 $exp[-a(t-n)^{2}] = S$
 $exp[-a(t-n)^{2}] = S$
 $(t-n)^{2} = \frac{1}{2}by\frac{1}{5}$
 $t-np = \sqrt{\frac{n}{2}by\frac{1}{5}}$
 $t = np t \sqrt{\frac{n}{2}by\frac{1}{5}}$ with probabilit
 $X \leq np t \sqrt{\frac{n}{2}by\frac{1}{5}}$ with probabilit
 $X \leq np t \sqrt{\frac{n}{2}by\frac{1}{5}}$ with probabilit
 $X = x_{1} + \dots + x_{n}$
For some $x_{1} \dots x_{n}$
 $such that geach x_{i} in bounded
 $petween$
 $D = x_{i} + \dots + x_{n}$
 $f = x_{2} + \dots + x_{n}$
 $S = x_{1} + \dots + x_{n}$
 $f = x_{i} + \dots + x_{n}$$

$$\frac{t ? \Sigma M}{z}$$

$$= \exp \left[-\frac{a(t - \Sigma M)^{2}}{n(b - a)^{2}} \right]$$

0.05

Note: $X \sim Bin(n, p)$ $TP(X \leq t)$, $t \leq np$ $= \mathbb{P}\left[\sum_{i=1}^{n} (-x_i) \ge -t\right]$ $\leq \exp\left[-\frac{a(t-np)^2}{n}\right]$

$$= S$$

$$a (t-np)^{2} = by \frac{1}{s}$$

$$n = \sqrt{\frac{n}{2} by \frac{1}{s}}$$

$$t = np - \sqrt{\frac{n}{2} by \frac{1}{s}}$$

Deduced: $P[X \leq nP - \sqrt{\frac{n}{2}} \frac{h_{1}}{s}] \leq S$ $P[X \leq nP - \sqrt{\frac{n}{2}} \frac{h_{2}}{s}] \geq 1-S$ $P[X \geq nP - \sqrt{\frac{n}{2}} \frac{h_{3}}{s}] \geq 1-S$ $P[P \leq \frac{x}{n} + \sqrt{\frac{h_{3}}{2}} \frac{y_{6}}{s}] \geq 1-S$

Keep to sking that coin.

$$K = 9$$

$$P_{1} = 0.1, P_{2} = 0.2, P_{3} = 0.3, \dots P_{q} = 0.9$$
Best possible Aeward = \$900
On: What value of m would make
it highly unlikely for us to pick 8
instead of 9?
Ans: P[Bin(M, 0.8) > Bin(M, 0.9)] < (0, 0)
= P[ZY_{1} > ZX_{1}] (0, 0)
= P[ZY_{1} > ZX_{2}] (0, 0)
= P[ZY_{1} - X_{1} < 0]
Kight = Y_{1} - X_{1} < 0]
Right = Y_{1} - X_{1} < 0]
= exp[-2[m(0,1)]^{2}] = -m(0,1)
$$= exp[-\frac{m(0,01)}{2}] = S$$

$$m = 200 \times \log \left(\frac{1}{6}\right)$$

$$E = 0.1 \qquad M = 460$$

$$L \subset B \qquad (U \text{ pper Confidence})$$
Bound Algorithm
$$\frac{\text{Version 1}}{\text{Basic Sx} \text{ ploration. (m=1)}}$$

$$E \quad \text{For } t = K + 1, \dots$$

$$\frac{1}{6}, \frac{1}{6}, \dots, \frac{1}{6} \text{ the torical dota}$$

$$\frac{1}{6}, \frac{1}{6}, \dots, \frac{1}{6} \text{ the torical dota}$$

$$\frac{1}{6}, \frac{2}{6}, \dots, \frac{3}{6} \text{ the torical dota}$$

$$\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \dots, \frac{3}{6} \text{ the torical dota}$$

$$\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \dots, \frac{3}{6} \text{ the torical dota}$$

$$\frac{1}{6}, \frac{1}{6}, \frac{1}{6$$

0/1 UCB Basic exploration m=1 For t= Ktl ... (2)S: some (pit)+ log 1/s small number 2 n.(+) number of Λ_{z} : & pick coin with highest volc of A times the ith coin was tossed in premious sound. Thompson Sampling Prior: Pr Pk With Unif Bil After trounds of the game, $n_i(t) = #$ tosses for ith coin upto round t. $X_i(t) = #$ heads for ith coin upto round t Posterior for coin i: Beta $(X_{i}(+)+1, n_{i}(+)-X_{i}(+)+1)$

Sample from these K posterior distribution. $p^{(t)}, p^{(t)}, \dots, p^{(t)}_{K}$ p(t) is the Pick coin for which Largest. Start the process at t=0. (Initially $M_i(0) = 0$, $\chi_i(0) = 0$)