Lecture 19
Last Lecture
Inequalities for Tail Probabilities.
x : riv

$$
\begin{aligned}
& \mathbb{P}\{x \geqslant t\} \\
& \{t \geqslant \mu
\end{aligned}
$$

Right tail probability
Chernoft $\mathbb{P}\{x \geqslant t\}$
Bound:

$$
\left.\begin{array}{l}
P\{x \geqslant t\} \\
\leqslant \min _{\lambda \geqslant 0} \frac{\mathbb{E} e^{\lambda x}}{e^{\lambda t}}
\end{array}\right\}
$$

Left Tail:

$$
\begin{aligned}
& \lambda \geqslant 0 \quad e \\
& \mathbb{P}\{x \leq t\} \quad t \leqslant \mu \\
= & \mathbb{P}\{-x \geqslant-t\} \\
\leqslant & \min _{\lambda \geqslant 0} \frac{\mathbb{E} e^{\lambda(-x)}}{e^{\lambda(-t)}}-t \geqslant-
\end{aligned}
$$

(1) Binomial $x \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& \text { Binomial } \underbrace{\exp \left[-n D\left(\frac{t}{n}, p\right)\right]}_{\operatorname{mean}=n p} \\
& \mathbb{P}\{x \geqslant \epsilon t\} \leq 8 \\
& t \geqslant n p \quad D(\rho, p)=\rho \log \frac{p}{p}+(1-\rho) \log \frac{1-\rho}{1-p}
\end{aligned}
$$

(2) Hoeffding Bound:

$$
\begin{aligned}
& \text { Hoeffding Bound! } \\
& \mathbb{P}[X \geqslant t] \leq \exp \left[-2^{n}\left(\frac{t}{n}-p\right)^{2}\right] \\
& \operatorname{Bin}(n, p) t
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \frac{(t-n p)^{2}}{n}=\frac{1}{2} \log \frac{1}{8} \\
& t-n p=\sqrt{\frac{n}{2} \operatorname{los} \frac{1}{8}} \\
& t=n p+\sqrt{\frac{n}{2} \operatorname{los} \frac{1}{8}}
\end{aligned}
$$

$\therefore X \leq n p+\sqrt{\frac{n}{2} \log \frac{1}{8}}$ with probabith at least 1-8
(3) General Hoeffding: Binomial:

$$
x=x_{1}+\cdots+x_{n} x_{n} \quad \begin{aligned}
& x=x_{1}+\cdots+x_{n} \\
& x
\end{aligned}
$$

for some $x_{1} \ldots x_{n}$
such that ac each x_{i} is bounded between $a \& b$.
(b) $x_{1} \ldots x_{n}$ are in dependent

$$
\begin{aligned}
& \text { (b) } x_{1} \ldots x_{n} \text { are independent } \\
& \mathbb{P}[x \geqslant t] \quad t \geqslant \mathbb{E} x=\mathbb{E}\left(x_{1}\right)+\cdots+\mathbb{E}\left(x_{n}\right) \\
& \text { notation: } \mu_{i}=\mathbb{E} x_{i}
\end{aligned}
$$

notation: $\mu_{i}=\mathbb{E} X_{i}$

$$
\mathbb{E} x=\Sigma \mu_{i}
$$

$$
\begin{gathered}
t \geqslant \sum \sum \mu_{i} \\
\exp ^{t}\left[\frac{-2\left(t-\Sigma \mu_{i}\right)^{2}}{n(b-a)^{2}}\right] \\
0.05
\end{gathered}
$$

Note:

$$
\begin{aligned}
& x \sim \operatorname{Bin}(n, p) \quad t \leq n p \\
& \mathbb{P}(x \leq t), \quad \\
&= \mathbb{P}\left[\sum_{i=1}^{n}\left(-x_{i}\right) \geqslant-t\right] \\
& \leq \exp \left[\frac{2(t-n p)^{2}}{n}\right] \\
&= \delta
\end{aligned}
$$

$$
\begin{gathered}
=\delta \\
\frac{2(t-n p)^{2}}{n}=\log \frac{1}{8} \\
n \operatorname{los} \frac{1}{n}
\end{gathered}
$$

$$
\frac{n p-t}{n p} \sqrt{\frac{n}{2} \log \frac{1}{8}}
$$

Deduced:

$$
t=n p-\sqrt{\frac{n}{2} \log \frac{1}{8}}
$$

$$
\begin{aligned}
& \text { Deduced: } \\
& \mathbb{P}\left[x \leq n p-\sqrt{\frac{n}{2} \operatorname{lo} \frac{1}{8}}\right] \leq \delta \\
& \text { or } \mathbb{D}\left[x \geqslant n p-\sqrt{\frac{n}{2} \cos \frac{1}{8}}\right] \geqslant 1
\end{aligned}
$$

or $\mathbb{P}\left[x \geqslant n p-\sqrt{\frac{n}{2} \operatorname{los} \frac{1}{8}}\right] \geqslant 1-\delta$

$$
\mathbb{P}\left[p \leq \frac{x}{n}+\sqrt{\frac{\log 1 / 8}{2 n}}\right] \geqslant 1-\delta
$$

$$
\begin{array}{r}
{[p \leqslant \underbrace{\left(\frac{x}{n}+\log 1 / \delta_{2 n}\right.}_{\cup \subset B=\begin{array}{c}
\text { Upper } \\
\text { Confidence } \\
\text { Bound }
\end{array}} w \cdot p \geqslant 1-\delta} \\
\text { MULTI - ARMED BANDIT }
\end{array}
$$

I have K coins:
probability of success: $p_{1}, p_{2}, \ldots, p_{k}$
Each round: You pick a coin that I will toss.

$$
\begin{array}{l|l|l}
& \text { we pill } \\
\text { Heads } \rightarrow \text { you get } \$ 1 & \text { for } \\
T=1000 \\
\text { Tails } \rightarrow \text { you get } \$ 0 & \text { rounds. }
\end{array}
$$

Qi: How would you play?
(1) Explore then Commit (ETC)

Fix a number $m \geqslant 1$.
(a) Toss each coin m times.

$$
\text { (} m \times K \text { rounds) }
$$

(Lb) $\hat{p}_{i}=\begin{gathered}\text { Proportion of observed heads } \\ \text { for coin } i\end{gathered}$ Exploration
(c) Pick the coin where \hat{p}_{i} is the largest
keep tossing that coin.

$$
\begin{array}{ll}
K=9 & P_{8}=0.81 \\
P_{1}=0.1, P_{2}=0.2, P_{3}=0.3, \ldots & P_{q}=0.9
\end{array}
$$

Best possible Reward $=\$ 900$
Qi: What value of m would make it highly unlikely for us to pick 8

$$
\begin{aligned}
& \text { instead of 9? } \\
& \text { Ans: } \\
& \text { stead of } 9 \text { ? } \\
& =\mathbb{P}\left[\sum y_{i} \geqslant \sum x_{i}\right] \\
& y_{i} \sim \operatorname{Ber}(0.8) \\
& x_{i} \sim \operatorname{Ber}(0.9) \\
& =\mathbb{P}[\sum_{i=1}^{m}(\underbrace{y_{i}-x_{i}}) \geqslant 0] \\
& \text { Right } \\
& \begin{array}{ll}
\frac{-1}{a} \leq y_{i}-x_{i} \leq \frac{1}{b} & t=0 \\
\mathbb{E}\left(\sum_{i=1}^{m}\left(y_{i}-x_{i}\right)\right)
\end{array} \\
& \leq \exp \left[\frac{-2[m(0.1)]^{2}}{m 4}\right]=-m(0.1) \\
& =\exp \left[-\frac{m(0.01)}{2}\right] \\
& =\exp \left[\frac{-m}{200}\right]=\delta
\end{aligned}
$$

$$
\begin{array}{r}
m=200 \times \log \left(\frac{1}{8}\right) \\
s=0.1 \quad n=460
\end{array}
$$

$\sqcup C B\binom{$ Upper Confidence) }{ Bound Algorithm }
Version 1:
(a) Basic Exploration. $(m=1)$
(b) For $t=k+1$.
$\underbrace{\hat{p}_{1}, \hat{p}_{2}}, \ldots, \underbrace{\hat{p}_{k}}$: Historical data unto round
pick the coin with highest $t-1$.
eg: Exploration:

$$
\left.\begin{array}{cccccc}
\text { Explonan } & 2 & 3 & & K \\
0 & 0 & \square & 0 & 1 & 1 \\
0 & 0 & \frac{1}{2} & 0 & 1 & \cdots \\
0 & 0 & \frac{1}{2} & 0 & 1 & \cdots
\end{array}\right]
$$

$$
\frac{0.1}{0} \cdots \frac{0.7}{1} \cdots \frac{0.8}{1} 0
$$

$\cup C B$
(1) Basic exploration $m=1$
(2) For $t=k+1, \ldots$

$$
\begin{aligned}
& \text { (2) For } t=k=\sqrt{\frac{\log 1 / s}{2 n,(t)}} \\
& \text { (} \hat{p}_{i}^{(t)}+\sqrt{\text { pick coin with }} n_{i}
\end{aligned}
$$

\& pick coin with highest value of
number
number of Kines the $i^{\text {th }}$ coin was tossed in previous round.
Thompson Sampling
Prior: $P_{1} \ldots P_{k} \stackrel{\text { ind }}{\sim}$ Unit [0,1]
After t rounds of the game, $n_{i}(t)=\#$ tosses for $i^{\text {th }}$ coin upto round t.
$X_{i}(t)=\#$ heads for $i^{\text {th }}$ coin unto round t
Posterior for coin i :

$$
\begin{aligned}
& \text { sterior for coin } i: \\
& \operatorname{Beta}\left(X_{i}(t)+1, n_{i}(t)-X_{i}(t)+1\right)
\end{aligned}
$$

Sample from these K posterior

$$
p_{1}^{(t)}, p_{2}^{(t)}, \ldots, p_{k}^{(t)}
$$

Pick coin for which $p_{i}^{(t)}$ is the largest.
Start thees process at $t=0$. (Initially $n_{i}(0)=0, x_{i}(0)=0$)

