O_A, O_B: parameters. Simpler Question @ Infer OA from reviews D Infer OB from reviews in B. Posterior of OA given t_A = 3, -A=0 For this calculation, we need 1) Proior: Distribution of the before observing any revew data. OAE CO, J 0: lowest possible quality 1: highert possible quality $\theta_{A} \in \{0, 0.01, 0.02, 0.03, \dots\}$ 0,98,0,99,17 DA ~ Uniform 20,0.01,..., 0.99,1} $\left(P \xi \Theta_{A} = u \xi = \frac{1}{101} \right)$ 2 Lizet hood : $\Theta_{A} = \nu \left(\frac{1}{2} \right)$ PZ observed dates t_=3, -A=0

Interpretations for
$$\Theta_A$$

() Θ_A : probability of a positive
review.
(2) Θ_A : Population proposition of
positive reviews.
(3) Θ_A : Proportion of Usage Instances
where the user is satusfied
Posterior for Θ_A
 $P \{ \Theta_A = u \}$ observed
review data
 $= P [\Theta_A = u] \times P [observed for A]$
 $P (observed review)$
 $data for A$
 $P (observed review)$
 $data for A$
 $P (observed review)$
 $data for A$
 $P (observed data)$
 $= P (Observed review)$
 $data for A$
 $P (observed data)$
 $= P (Observed review)$
 $for A$
 $P (observed review)$
 $P (observed for A)$
 $P (O$

$$= \frac{P(\Theta_{A} = u) \times P(Observed | \Theta_{A} = u)}{for A} \xrightarrow{\Theta_{A} = u} \frac{1}{for B} \xrightarrow{\Theta_{A} = u} \xrightarrow{\Theta_{A} = u} \frac{1}{for B} \xrightarrow{\Theta_{A} = u} \xrightarrow$$

TP(O_=u_A) reviews) P(O_B for A) P(O_B UA, UB: UA LUB $\frac{1}{101} \times u_{A}^{3}$ $\frac{1}{2} \times v_{A}^{3}$ $\frac{1}{2} \times v_{A}^{3}$ $\frac{1}{101} \times u_{B}^{19} \times (1)$ $\setminus \star$ 101 0.69 Continuour Priors $\Theta_{A} \sim U_{nvil} \{0, 0.01, 0.02, ..., 0.98, 0.99, j\}$ Prior -~ Unit [o,] $TP\{ \Theta_A = u\} = \frac{1}{101}$ $(u) = I \{ 0 \leq u \leq l \}$ $\frac{1}{for A} \left(\Theta_A = u \right) = u^3$ Likeluhard Posterior

$$P(\Theta_{A} = u | observed}_{dote})$$

$$= P(\Theta_{A} = u) \times P(observed}_{\Theta_{A}} = u)$$

$$P(\Theta_{A} = u) \times P(observed}_{\Theta_{A}} = u)$$

$$P(\Theta_{A} = u) \times P(observed}_{\Theta_{A}} = u)$$

$$P(U) = (U) \times P(observed}_{\Theta_{A}} = u)$$

$$P(U) \times P(observed}_{\Theta_{A}} = u)$$

$$= \frac{1 \times u^{19} (1-u) I}{\int_{1}^{1} \sqrt{19} (1-v) dv}$$

$$= \frac{1}{u} (1-u) I \{0 \le u \le 1\}$$

$$= \frac{1}{20} - \frac{1}{21}$$

$$= 420 u^{19} (1-u) I \{0 \le u \le 1\}$$
Beta (20, 2)
Home: $P(\Theta_{A} < \Theta_{B}) data = 0.7$