
Data 102, Fall 2023
Homework 3

Due: 5:00 PM Friday, October 20, 2023

Submission Instructions

Homework assignments throughout the course will have a written portion and a code portion.
Please follow the directions below to properly submit both portions.

Written Portion:

• Every answer should contain a calculation or reasoning.

• You may write the written portions on paper or in LATEX.

• If you type your written responses, please make sure to put it in a markdown cell instead
of writing it as a comment in a code cell.

• Please start each question on a new page.

• It is your responsibility to check that work on all the scanned pages is legible.

Code Portion:

• You should append any code you wrote in the PDF you submit. You can either do so
by copy and paste the code into a text file or convert your Jupyter Notebook to PDF.

• Run your notebook and make sure you print out your outputs from running the code.

• It is your responsibility to check that your code and answers show up in the PDF file.

Submitting:

You will submit a PDF file to Gradescope containing all the work you want graded (including
your math and code).

• When downloading your Jupyter Notebook, make sure you go to File → Save and
Export Notebook As → PDF; do not just print page from your web browser because
your code and written responses will be cut off.

• Combine the PDFs from the written and code portions into one PDF. Here is a useful
tool for doing so. As a Berkeley student, you get free access to Adobe Acrobat, which
you can use to merge as many PDFs as you want.

• Please see this guide for how to submit your PDF on Gradescope. In particular, for
each question on the assignment, please make sure you understand how to select the
corresponding page(s) that contain your solution (see item 2 on the last page).
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Late assignments will count towards your slip days; it is your responsibility to ensure you
have enough time to submit your work.

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, please include their names on your submission. Please make sure any handwritten
answers are legible, as we may deduct points otherwise.

GLM for Dilution Assay

1. In this question, you’ll go beyond the four GLM types you saw in class, and explore a
new kind of GLM for solving a specific scientific problem.

Being able to reformulate problems as generalized linear models (GLMs) enables you to
solve a wide variety of problems with existing packages. We recommend reviewing the
examples of GLMs from Lectures 10 and 11. In particular, make sure you understand
that formulating a GLM involves choosing an 1) output distribution and 2) link function
that are appropriate for the application at hand.

In this problem, you’ll retrace the footsteps of the statistician R. A. Fisher and develop
one of the very first applications of GLMs. In a 1922 paper, Fisher formulated a GLM
he used to estimate the unknown concentration ρ0 of an infectious microbe in a solution.
Without specialized technology to directly measure ρ0 from the solution, Fisher devised
the following procedure: we will progressively dilute the original solution, and after each
dilution, we’ll pour out some small volume v onto a sterile plate. If zero microbes land
on the plate, it will remain sterile, but if any microbes land on a plate, they will grow
visibly on it (we call this an “infected plate”). By observing whether or not the plate is
infected at each dilution, and by formulating the relationship between this data and ρ0
as a GLM, we can estimate ρ0 from this data.

Specifically, let ρt denote the concentration at dilution t. Each time, we dilute the solution
to be half its concentration, such that

ρt =
ρ0
2t

(1)

for t = 0, 1, . . .. When we pour out volume v of the solution onto the plate, and wait
awhile to allow for microbe growth, we can observe whether a plate was infected (i.e.,
has a non-zero number of microbes) or is sterile (i.e., has zero microbes). Therefore, our
data Yt ∈ {0, 1} is whether or not the plate is infected at each dilution.

In other words, we observe a sequence of binary values Y0, . . . , Yt, and from
that, we want to estimate the initial concentration ρ0. In this question, we’ll
formulate a GLM that relates ρ0 and t to the data Yt. Estimating the parameters of this
GLM will then allow us to estimate ρ0, as will become clear in the last part.

(a) (2 points) At dilution t, the data Yt ∈ {0, 1} indicates whether or not the plate is
infected. The chance that a plate gets infected is denoted by µ(t) := E[Yt]. Write
down an output distribution for Yt that is appropriate for the values it takes on,
using µ(t) as a parameter. (We’ll derive what µ(t) should be in the next part).
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(b) (3 points) At dilution t, we pour out volume v onto a plate, so the expected number
of microbes on the plate is ρtv. The actual number of microbes is distributed as a
Poisson random variable with this mean ρtv:

# microbes on plate at dilution t ∼ Poisson(ρtv). (3)

Using this fact, write out an expression for µ(t) := E[Yt]. Start with

µ(t) = P(plate is infected at dilution t) (4)

= 1− P(there are 0 microbes on plate at dilution t). (5)

(c) (3 points) Use your findings from part (b), along with Equation (1), to find a link
function g such that

g(µ(t)) = β0 + β1t (8)

for some constants β0 and β1. (Remember that in class, we talked about the inverse
link function g−1, such that µ(t) = g−1(β0 + β1t)). Your answer should be of the
form “β0 = . . . and β1 = . . .”.

(d) (2 points) Choosing an appropriate output distribution and link function as we’ve
done in Parts (a) and (c) completes the GLM specification. Now, suppose you’ve
estimated β0 and β1 (e.g., using maximum-likelihood estimation). Write down an
estimate of ρ0.

Hint: For this question, you do not need to estimate β0 and β1: assume you know
them, and find a way to estimate ρ0 from them.

Image Denoising with Gibbs Sampling

2. In this problem, we derive a Gibbs sampling algorithm to restore a corrupted image [1].
A grayscale image can be represented by a 2-dimensional array X of shape n×m, where
the intensity of the (i, j)-th pixel is Xij . In this problem, we are given an image X whose
pixels have been corrupted by noise, and the goal is to recover the original image Z.

(a) (2 points) Load the grayscale image X.pkl as a numpy arrayX. Visualize the image.

From plotting the image X, it is clear that it has been corrupted with noise. Let
Z denote the original image, which we also represent as an n × m array. Let I =
{(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ m} denote the collection of all pixels in the image,
represented by the corresponding index of the array. Given a pixel (i, j), define the
set of neighboring pixels to be

N(i,j) =
{
(i′, j′) ∈ I : (i = i′ and |j − j′| = 1) or (|i− i′| = 1 and j = j′)

}
.

To capture the fact that, in natural images, neighboring pixels are likely be similar,
we consider the following prior over the original image:

p(Z) ∝ exp

−1

2

∑
(i,j)∈I

aZ2
ij − b

∑
(i′,j′)∈N(i,j)

ZijZi′j′

 .
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Assuming the image has been corrupted with Gaussian noiseX(i,j) | Z(i,j) ∼ N (Z(i,j), τ
−1)

(independently across pixels (i, j) ∈ I), the complete posterior can be written as

p(Z | X) ∝ exp

−1

2

∑
(i,j)

(a+ τ)Z2
ij − 2τZijXij − b

∑
(i′,j′)∈N(i,j)

ZijZi′j′

 (11)

Let Sij =
∑

(i′,j′)∈N(i,j)
Zi′j′ . By completing the square in the posterior (11), we have

Zij | (Zi′j′)(i′,j′ )̸=(i,j), X ∼ N
(
τXij + bSij

a+ τ
,

1

a+ τ

)
(12)

(b) (2 points) Fill in the missing line of pseudocode for a Gibbs sampler of the posterior,
p(Z|X). Be specific with each conditioned variable and sub/superscript!

• Initialize Z(0) = X.

• For t = 1, . . . , T :

– Sample Z
(t)
1,1 ∼ p(Z1,1 | Z1,2 = Z

(t−1)
1,2 , Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

– Sample Z
(t)
1,2 ∼ p(Z1,2 | Z1,1 = Z

(t)
1,1, Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

– Sample Z
(t)
1,3 ∼ # TODO: fill this in.

– . . .

– Sample Z
(t)
n,m ∼ p(Zn,m | Z1,1 = Z

(t)
1,1, Z1,2 = Z

(t)
1,2, . . . , Zn,m−1 = Z

(t)
n,m−1, X)

(c) (3 points) Write the pseudo-code from Part (b) more explicitly both by using a dou-
ble for-loop over (i, j) ∈ I and by being explicit about the conditional distributions

of the form p(Z1,1 | Z1,2 = Z
(t−1)
1,2 , Z1,3 = Z

(t−1)
1,3 , . . . , Zn,m = Z

(t−1)
n,m , X).

(d) (5 points) Implement the Gibbs sampler from Part (c) with a = 250, b = 62.5, and
τ = 0.01. Run your code for T = 1 iteration, i.e. update each coordinate exactly
once. Visualize the resulting image Z(1). Time your code and estimate how long it
would take to compute Z(100).

Hint : To convert your pseudo-code into real code, it might be helpful to use

np.random.randn() to generate a N (0, 1) random variable at each step.

(e) (2 points) The bottleneck in running the Gibbs sampler from Part (d) is sampling
a single pixel Zij with the values of all others held fixed. Fortunately, it is possible
to speed up the sampling process with an improvement known as blocked Gibbs
sampling. Specifically, define two subsets of the pixels Ieven = {(i, j) : i+ j is even}
and Iodd = {(i, j) : i+ j is odd} . The blocked Gibbs sampler proceeds as follows:

• Initialize Z(0) = X.

• For t = 1, . . . , T :

– Let Z = Z(t−1).

– Let ∆ be an n×m matrix with N (0, 1
a+τ ) entries.

– For (i, j) ∈ Ieven:
∗ Let Sij =

∑
(i′,j′)∈N(i,j)

Zi′j′

– Update ZIeven = τ
a+τXIeven +

b
a+τ SIeven +∆Ieven .

– For (i, j) ∈ Iodd:
∗ Let Sij =

∑
(i′,j′)∈N(i,j)

Zi′j′
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– Update ZIodd = τ
a+τXIodd +

b
a+τ SIodd +∆Iodd .

– Let Z(t) = Z.

The advantage of this approach is that the inner for-loops can be vectorized. Explain
why updating half the variables ZIeven (and then ZIodd) at once is justified.
Hint : if you’re not sure why, try drawing out a small grid of pixels and label each
one with i+ j.

(f) (1 point) Implement the Gibbs sampler from Part (e) using a = 250, b = 62.5 and
τ = 0.01. Run your code for T = 100 iterations, and visualize the resulting image
Z(100). Time your code and report how long it took.
Hint: Compute the entire n × m matrix S at once using matrix operations on Z.
You may find it helpful to pad the matrix Z with a border of zeros using Z bar =

np.pad(Z, 1). Then use slicing on the (n+ 2)× (m+ 2) matrix Z bar to compute
S.

Rejection Sampling

3. (6 points) Consider the function

q(x) = cos2(12x)× |x3 + 6x− 2| × 1{x ∈ (−1,−.25) ∪ (0, 1)}.

In this problem, we use rejection sampling to generate random variables with pdf p(x) =
Zq(x).

(a) (2 points) Plot q over its domain. What is a uniform proposal distribution f that
covers the support of p? What is the largest possible constant M such that the
scaled target distribution h(x) = Mq(x) satisfies h(x) ≤ f(x) for all x?

(b) (2 points) Suppose you run rejection sampling with target h and proposal f from
part (a) until you generate n samples and your sampler runs a total of N ≥ n times,
including n acceptances and N − n rejections. Explain how you can use n,N and
M to estimate Z.
Hint : the ratio of acceptances n to total runs N is an approximation of the ratio
between the area under the curve h(x) and the area under f(x).
Hint : remember what happens if you integrate a pdf over its entire support.

(c) (2 points) Use rejection sampling to generate a sample of size 103 from h(x). Since
p(x) is a pdf and it’s proportional to h(x), we can display its estimate easily: plot a
normalized histogram of your sample, and overlay a smooth kernel density estimate,
that will provide more information on the shape of the estimated distribution.
Repeat the previous steps increasing the number of samples to 106.
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