
Data 102, Fall 2023
Homework 2

Due: 5:00 PM Friday, September 29, 2023

Submission Instructions

Homework assignments throughout the course will have a written portion and a code portion.
Please follow the directions below to properly submit both portions.

Written Portion:

• Every answer should contain a calculation or reasoning.

• You may write the written portions on paper or in LATEX.

• If you type your written responses, please make sure to put it in a markdown cell instead
of writing it as a comment in a code cell.

• Please start each question on a new page.

• It is your responsibility to check that work on all the scanned pages is legible.

Code Portion:

• You should append any code you wrote in the PDF you submit. You can either do so
by copy and paste the code into a text file or convert your Jupyter Notebook to PDF.

• Run your notebook and make sure you print out your outputs from running the code.

• It is your responsibility to check that your code and answers show up in the PDF file.

Submitting:

You will submit a PDF file to Gradescope containing all the work you want graded (including
your math and code).

• When downloading your Jupyter Notebook, make sure you go to File → Save and
Export Notebook As → PDF; do not just print page from your web browser because
your code and written responses will be cut off.

• Combine the PDFs from the written and code portions into one PDF. Here is a useful
tool for doing so. As a Berkeley student, you get free access to Adobe Acrobat, which
you can use to merge as many PDFs as you want.

• Please see this guide for how to submit your PDF on Gradescope. In particular, for
each question on the assignment, please make sure you understand how to select the
corresponding page(s) that contain your solution (see item 2 on the last page).
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Late assignments will count towards your slip days; it is your responsibility to ensure you
have enough time to submit your work.

Data science is a collaborative activity. While you may talk with others about the home-
work, please write up your solutions individually. If you discuss the homework with your
peers, please include their names on your submission. Please make sure any handwritten
answers are legible, as we may deduct points otherwise.

The One with all the Beetles

1. (9 points) Cindy has an inordinate fondness for beetles and for statistical modeling. She
observes one beetle everyday and keeps track of their lengths. From her studies she feels
that the beetle lengths she sees are uniformly distributed. So she chooses a model that the
lengths of the beetles come from a uniform distribution on [0, w]: here w is an unknown
parameter corresponding to the size of the largest possible beetle. Since the maximum
size w is unknown to her, she would like to estimate it from the data. She observes lengths
of n beetles, and calls them x1, . . . , xn.

(a) (1 point) What is the likelihood function of the observations x1, . . . , xn? Express
your answer as a function of the largest size parameter w.

Hint: Your answer should include the indicator function 1(maxi xi ≤ w). To see
why, consider what happens if w = 3 cm and x1 = 5 cm.

(b) (2 points) Use your answer from Part (a) to explain why the maximum likelihood
estimate (MLE) for w is the maximum of the observed lengths, that is,

ŵMLE = max{x1, x2, . . . , xn}

Hint: You don’t need to use calculus; a qualitative argument would suffice.

(c) (2 points) Cindy decides to instead use a Bayesian approach. She has a prior belief
that w follows a Pareto distribution with parameters α, β > 0. We can write:

w ∼ Pareto(α, β)

Then the density function of w is

p(w) =
αβα

wα+1
1(w ≥ β)

Show that the posterior distribution for w is also a Pareto distribution, and compute
the parameters as a function of α, β, and the observations x1, . . . , xn.

(d) (2 points) Provide a short description in plain English that explains what the param-
eters of the Pareto distribution mean, in the context of the Pareto-uniform conjugate
pair.

Hint: For the Beta-Binomial conjugate pair that we explored in class, the answer
would be that the Beta parameters acted as pseudo-counts of observed positive and
negative examples.
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(e) (2 points) Cindy started with the initial prior with parameters α = 1 and β = 10
on day 0. Use the code in beetledata.py to generate the data for the lengths of the
beetles she sees, starting from Day 1 to Day 100. Use the data to make a graph of
one curve for each of the days 1, 10, 50 and 100 (so four curves total), where each
curve is the probability density function of Cindy’s posterior for the respective day.

Note: For the Pareto distribution, code the density function by hand rather than
relying on the distribution provided by scipy.

(f) (0 points) (Optional) Use pymc3 to sample from the posterior for days 1, 10, 50 and
100 and plot a density function for each of the cases. Compare the results from the
analytic and simulation based computation of the densities.

Bayesian Fidget Spinners

2. (8 points) Nat’s company manufactures fidget spinners. The company uses two factories,
which we’ll call factory 0 and factory 1. Each fidget spinner from factory k is defective
with probability qk (k ∈ {0, 1}). Nat knows that factory 0 produces fewer defective fidget
spinners than factory 1 (in other words, q0 < q1).

She receives n boxes full of fidget spinners, but the boxes aren’t labeled (in other words,
she doesn’t know which box is from which factory). For each box, she starts randomly
pulling out fidget spinners until she finds a defective one, and records how many fidget
spinners she pulled out (including the defective one). She calls this number xi for box i,
for i = 1, . . . , n.

She wants to estimate the following pieces of information:

• Which boxes came from factory 0, and which came from factory 1? She defines a
binary random variable for each box zi with the factory label (i.e., zi = 0 if box i is
from factory 0, and zi = 1 if box i is from factory 1).

• How reliable is each factory? In other words, what are q0 and q1?

Inspired by what she learned about Gaussian mixture models, she sets up the following
probability model:

zi ∼ Bernoulli(π)

qk ∼ Beta(αk, βk)

xi|zi, q0, q1 ∼ Geometric(qzi)

(a) (1 point) Draw a graphical model for the probability model described above if n = 2
(i.e., there are only two boxes of fidget spinners).

Nat decides to implement the model above setting the following hyperparameters:

π = 0.45, q0 ∼ Beta(1, 5), q1 ∼ Beta(5, 1)

(b) (2 points) The choices of the parameters in Nat’s model represents her beliefs about
the factories.
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i. (1 point) From her choice for π, what can we infer about her beliefs about the
two factories?

ii. (1 point) Similarly, from her choices for α and β, what can we infer about her
beliefs about the factories?

(c) (5 points) Use fidget_data.py to generate the data that Nat observes, then, using
PyMC3, fit the model outlined above, setting the hyperparameters to the values that
Nat chose. Obtain 1000 samples from the posterior distribution p(q0, q1|x1, . . . , xn),
and generate a scatterplot (one point per sample).

You can use the code below (also provided to you in fidget_model.py) to help you
get started.

1 import pymc3 as pm

2

3

4 alphas = ...

5 betas = ...

6 pi = ...

7

8 with pm.Model() as model:

9 z = pm.Bernoulli(

10 # Define the Bernoulli Model Here

11 )

12

13 # Hint: you should use the shape= parameter here so that

14 # q is a PyMC3 array with both q0 and q1.

15 q = ...

16

17 # Hint: it may be useful to use "fancy indexing" like we did in

class.

18 # See below for an example

19 X = pm.Geometric(

20 # DEFINE THE GEOMETRIC MODEL HERE

21 )

22

23 trace = ....

24

25 # FANCY INDEXING

26

27 my_binary_array = np.array([0, 0, 1, 1, 0, 1])

28 my_real_array = np.array ([0.27 , 0.34])

29 print(my_real_array[my_binary_array ])

i. Under the posterior, what is the probability that factory 0 produces more boxes
than factory 1?

ii. What is your median estimate of factory 0’s defect rate, based on the samples
from the posterior?
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Baseball Average Prediction

3. (8 points) The following historical dataset is famous in the field of statistics ever since
it was used by Brad Efron and Carl Morris to illustrate the James-Stein estimator and
the Stein shrinkage phenomenon (see, for example, the Scientic American paper titled
“Stein’s Paradox in Statistics” by Efron and Morris, or Section 1.2 of Efron’s book on
Large Scale Inference).

In baseball, an at-bat (AB) is a hitter’s turn batting against a pitcher. In each at-bat,
the hitter can reach (or pass) first base on a hit (H). Batting average is used to measure
a hitter’s success and is calculated as the fraction AVG = H

AB .

The baseball.csv dataset (shown in Table 1) contains 18 rows and 3 columns. Each
row represents a baseball player and contains the following information:

• The player’s name

• The player’s number of hits (H) in the first 45 at-bats (AB)

• The player’s End of Season Batting Average (EoSAverage), calculated as the pro-
portion of hits over the total number of at-bats over the entire season

For example, the first row shows that Clemente had 18 hits in his first 45 at-bats and a
.346 EoSAverage.

The goal is to use the players’ early season performance (as indicated by the second
column) to predict their end of season performance (as indicated by the third column).

Player Name Number of Hits in
the first 45 At-Bats

EoSAverage

Clemente 18 .346
F Robinson 17 .298
F Howard 16 .276
Johnstone 15 .222
Berry 14 .273
Spencer 14 .270
Kessinger 13 .263
L Alvarado 12 .210
Santo 11 .269
Swoboda 11 .230
Unser 10 .264
Williams 10 .256
Scott 10 .303
Petrocelli 10 .264
E Rodriguez 10 .226
Campaneris 9 .286
Munson 8 .316
Alvis 7 .200

Table 1: Some Statistics of 18 Baseball Players from the 1970 Season
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(a) (1 point) For the ith player, we model their number of hits in the first 45 at-bats Hi

as
Hi ∼ Bin(45, θi),

where θi is their EoSAverage. This model places the problem of predicting EoSAv-
erages (based on hits in the first 45 at-bats) inside the framework of estimating
probabilities in a Bernoulli/Binomial model. Is this a sensible model? Why or why
not?

(b) (1 point) Calculate the mean squared error (MSE) of the naive proportion estimates
of θi given by θ̂i =

Hi
45 . Note that you are given values of θi in the last column of

Table 1.

(c) (2 points) The goal now is to compare the naive estimate with Bayes estimates. To
calculate Bayes estimates, we shall use a suitable Beta(a, b) prior.

To find the appropriate a and b, use the following procedure:

• Ignore the top four players as well as the bottom four players in Table 1, as
these players have either performed exceptionally well or exceptionally poorly
in the first 45 at-bats so their current averages may not be reflective of their
EoSAverages.

• Calculate the mean m and variance v of the remaining 10 players.

• Find a and b such that the mean and variance corresponding to the Beta(a, b)
distribution matches with m and v.

Report the values of a and b, and plot the Beta(a, b) density function.

(d) (1 point) Calculate the Bayes estimates using the posterior mean for each θi using
the Beta(a, b) prior from the previous part.

(e) (1 point) Calculate the MSE of the Bayes estimates you calculated in part (d).
The MSE of these estimates should be much smaller than the MSE of the naive
proportions from part (b).

(f) (2 points) The naive estimates and the Bayes estimates differ in one crucial as-
pect. The naive estimate of the EoSAverage for a player only uses data on this
player’s current record. On the other hand, the Bayes estimate uses also data from
other players’ current records (because this data was used to calculate a and b).
Some people find this paradoxical that the EoSAverage prediction for a particular
player should use data from other players, and find it hard to reconcile that these
paradoxical estimates often significantly outperform the naive estimates in terms of
accuracy. Provide a brief explanation of this paradox which sometimes goes by the
name “Stein’s Paradox”.
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