Data 102, Fall 2023 Midterm 1

- You have **110 minutes** to complete this exam. There are **6 questions**, totaling **50 points**.
- You may use one 8.5×11 sheet of handwritten notes (front and back), and the provided reference sheet. No other notes or resources are allowed.
- You should write your solutions inside this exam sheet.
- You should write your Student ID on every sheet (in the provided blanks).
- Make sure to write clearly. We can't give you credit if we can't read your solutions.
- Even if you are unsure about your answer, it is better to write down something so we can give you partial credit.
- We have provided a blank pages of scratch paper at the beginning of the exam. No work on this page will be graded.
- You may, without proof, use theorems and facts given in the discussions or lectures, but please cite them.
- We don't answer questions individually. If you believe something is unclear, bring your question to us and if we find your question valid we will make a note to the whole class.
- Unless otherwise stated, no work or explanations will be graded for multiple-choice questions.
- Unless otherwise stated, you must show your work for free-response questions in order to receive credit.

Last name	
First name	
Student ID (SID) number	
Berkeley email	
Name of person to your left	
Name of person to your right	

Honor Code [1 pt]:

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I am the person whose name is on the exam, and I completed this exam in accordance with the Honor Code.

Signature:

This page has been intentionally left blank.

1 True or False [5 Pts]

For each of the following, determine whether the statement is true or false. For this question, no work will be graded and no partial credit will be assigned.

- (a) [1 Pt] Define the Positive Predictive Value (PPV) as $\frac{TP}{TP+FP}$. This is a column-wise rate.
 - **True** \bigcirc False

Solution: TP and FP are in the same column where Decision = 1, thus this is a columnwise rate. the random variables X and Y(b) [1 Pt] In the graphical model are conditionally independent given Z. **False** \bigcirc True **Solution:** This is a "collider", therefore $X \perp U$ but $X \not\perp Y \mid Z$. the random variables X and Y(c) [1 Pt] In the graphical model are conditionally independent given Z. True \bigcirc False **Solution:** This is a "fork", therefore $X \perp \!\!\!\perp Y \mid Z$ but $X \not\!\!\perp Y$. (d) [1 Pt] In the graphical model the random variables X and Yare conditionally independent given Z. True \bigcirc False **Solution:** This is a "chain", therefore $X \perp \!\!\!\perp Y \mid Z$ but $X \not\!\!\perp Y$.

(e) [1 Pt] For rejection sampling to generate samples from the Beta(4, 1) density, it is more efficient to use Uniform[0, 1] as the proposal density compared to Beta(2, 1).

○ True False

Solution: The density function of the target Beta(4, 1) is $4x^3$, which has a maximum of 4 on [0, 1]. To use Uniform[0, 1] as the proposal, we will need to scale the density by 0.25 so that it's completely under Uniform[0, 1]'s density. To use Beta(2, 1) (whose density function is 2x and has a maximum of 2 on [0, 1]) as proposal, we will need to scale the density by 0.5. We can plot the two sets of target-proposal pairs:

Clearly, we can see it is more efficient to use Beta(2, 1) in this case.

2 Project Cybersyn [6 Pts]

Dr. Allende builds a model called *Cybersyn* to classify patients' tumor scans as benign (0) or malignant (1).

(a) [2 Pts] The first iteration of the model has an overall accuracy of 65% and a False Discovery Proportion (FDP) of 20%. However, Dr. Allende lost a sheet of paper containing the confusion matrix. He can only remember the two quantities shown below.

Help him complete the confusion matrix. You may use the box below for scratch work, but no work will be graded.

Solution:

From the two existing entries in the confusion matrix, we know the number of correct classifications is 5 + 8 = 13; meaning that there are 13/65% = 20 total data points.

We are also given that FDP is 20%; this means

$$20\% = \frac{n_{01}}{n_{01} + n_{11}} = \frac{n_{01}}{n_{01} + 8}.$$

Solving this gives us $n_{01} = 2$, making $n_{10} = 20 - 5 - 2 - 8 = 5$.

- Data 102
- (b) [2 Pts] To better adjust the model between false negatives and false positives, Dr. Allende defines the following loss function:

$$\begin{cases} \ell(D=0 \mid R=1) = 1\\ \ell(D=1 \mid R=0) = k\\ \ell(D=0 \mid R=0) = \ell(D=1 \mid R=1) = 0, \end{cases}$$

where D represents decision and R represents reality.

Which of the following statements is/are true? Select all that apply.

- \Box A. If k > 1, Dr. Allende thinks classifying a malignant tumor as benign is worse than classifying a benign tumor as malignant.
- **B.** If k = 0, the minimum loss is achieved by classifying every tumor as malignant.
- **C.** If k = 0, the classifier that minimizes the loss will have an FDP of $1 \pi_1$, where π_1 is the prevalence of malignant tumors in the dataset.
- \Box D. If 0 < k < 1, the minimum loss is achieved by classifying every tumor as benign.

Solution:

A. When k > 1, the cost of a false positive (D = 1, R = 0) is bigger than the the cost of a false negative (D = 1, R = 0). Thus Dr. Allende thinks it is worse to classify a benign (R = 0) tumor as malignant (D = 1).

B. When k = 0, false positive carries no cost, thus the optimal classifier will classify all points as positive (malignant) to achieve 0 loss.

C. Following the last part, if we have a classifier that classifies every point as positive, then the number of TP is the number of malignant tumors n_1 and FP is the number of benign tumors n_0 . Thus FDP = $\frac{\text{FP}}{\text{FP}+\text{TP}} = \frac{n_0}{n_0+n_1} = 1 - \pi_1$.

D. When 0 < k < 1, Dr. Allende thinks a false negative carries more cost than a false positive, but this does not mean we should classify every tumor as benign as there are still costs associated with false negatives.

(c) [2 Pts] Dr. Allende trains four models M_1, M_2, M_3, M_4 and plots their FPR and TPR using the following ROC curve.

Let n_0 and n_1 be the number of benign tumors and malignant tumors in the dataset. Which of the following is/are true? Select all that apply.

- **A.** If $n_0 = n_1$, M_2 is the model with the highest accuracy.
- **B.** If $n_0 = n_1$, all four classifiers have a higher accuracy than any random classifier.
- **C.** There exists some n_0 and n_1 such that M_1 is the model with the highest accuracy.
- \Box D. There exists some n_0 and n_1 such that M_3 is the model with the highest accuracy.

Solution: This question tests understanding of ROC curves.

A. When $n_0 = n_1$, the accuracy of the models will be $0.5 \cdot \text{TPR} + 0.5 \cdot \text{TNR}$. With this, we can calculate the accuracies of the four models— $M_1 : 0.7; M_2 : 0.8; M_3 : 0.6; M_4 : 0.6$. Therefore, M_2 is the model with the highest accuracy.

B. All four models lie above the diagonal line, so they all have accuracy better than 50%, whereas any random classifier (biased or not) will have a validation accuracy of exactly 50% when $n_0 = n_1$.

C. M_1 is the best model when $n_1 = 0$. Since FPR = 0, we have that its TNR = 1, making its accuracy 100%.

D. If we connect M_2 and M_4 on the plot, we notice that M_3 lies under the line. This means M_3 will be strictly worse than either M_2 or M_4 . More concretely, when $n_0 \neq 0$, M_2 will always be strictly better than M_3 . When $n_0 = 0$, M_4 will be strictly better than M_3 . Thus M_3 will never be the model with the highest accuracy.

3 Making Bad Decisions [13 Pts]

Juliet is a big fan of the band *The Strokes*. She collects vinyl records of the band's album *The New Abnormal*. However, vinyl records worn out as you play it. Juliet decides to see how long it lasts.

Let the lifetime of the record be T (in hours). She has two hypotheses on T:

- Null Hypothesis (H_0): $T \sim \text{Exponential}(\frac{1}{60})$
- Alternative Hypothesis (H_1): $T \sim \text{Exponential}(\frac{1}{120})$
- (a) [2 Pts] Which of the following is/are true about Juliet's hypothesis testing scheme? Select all that apply.
 - A. The null hypothesis is a simple hypothesis.
 - $\hfill\square$ B. The alternative hypothesis is a composite hypothesis.
 - C. Out of all possible tests with significance level α, the Likelihood Ratio Test maximizes the True Positive Rate (TPR).
 - \Box D. Out of all possible tests with significance level α , the Likelihood Ratio Test maximizes the True Negative Rate (TNR).

Solution: In a **simple hypothesis**, we are able to fully describe the distribution of the data. In Juliet's testing scheme, we can do this under both the null and alternative hypothesis. Therefore, A is true and B is false.

The Neyman-Pearson lemma says that the Likelihood Ratio Test is the most powerful test at significance level α . Here, being most powerful means achieving the highest statistical power, or True Positive Rate (TPR). Therefore, C is true. It is not generally the case that likelihood ratio test achieves the highest TNR. D is false.

(b) [2 Pts] Juliet wants to design a Likelihood Ratio Test. Which of the following is the Likelihood Ratio (LR)? Select the only correct option and **show all your work in the provided box**.

- \bigcirc **B**. LR(T) = $2e^{T/40}$
- \bigcirc D. LR(T) = $2e^{-T/120}$

Solution: Recall the definition of likelihood ratio:

$$LR(t) = \frac{f_1(t)}{f_0(t)}$$
$$= \frac{\frac{1}{120}e^{-\frac{1}{120}t}}{\frac{1}{60}e^{-\frac{1}{60}t}}$$
$$= \frac{1}{2}e^{-\frac{t}{120} + \frac{t}{60}}$$
$$= \frac{1}{2}e^{\frac{t}{120}}$$

(c) [5 Pts] Recall that the Likelihood Ratio Test rejects the null hypothesis for a data point T if $LR(T) \ge \eta$, for some threshold value η .

Juliet has **10** copies of the same record and decides to test the hypothesis for each record. To control the Family-wise Error Rate (FWER) of the 10 tests at 0.1, she uses Bonferroni correction.

Derive the threshold η . Simplify your answer as much as possible. Show all your work and fill in the blank.

Hint: You don't need to compute any integral. The CDF of $X \sim \text{Exponential}(\lambda)$ is $1 - e^{-\lambda x}$.

Solution: To keep FWER at 0.1, we need each test to have significance level 0.1/10 = 0.01. In other words, we want the FPR of each test to be 0.01:

$$FPR = 0.01$$

$$P(\text{Reject the null} \mid H_0) = 0.01$$

$$P(\text{LR} \ge \eta \mid H_0) = 0.01$$

$$P(\frac{1}{2}e^{\frac{T}{120}} \ge \eta \mid T \sim \text{Exp}(1/60)) = 0.01$$

$$P(T \ge 120 \log(2\eta) \mid T \sim \text{Exp}(1/60)) = 0.01$$

$$\exp\{-\frac{1}{60} \cdot 120 \log(2\eta)\} = 0.01$$

$$(2\eta)^{-2} = 0.01$$

$$(2\eta)^2 = 100$$

$$2\eta = 10$$

$$\eta = 5$$

Thus, we reject a test point T if $LR(T) \ge 5$.

(d) [2 Pts] Instead of FWER, Juliet now wants to control the False Discovery Rate (FDR) of the 10 tests at 0.1. She decides to use the Benjamini-Hochberg procedure. In particular, she calculates the *p*-values for the 10 data points and sorts them in non-decreasing order: $P_{(1)}, P_{(2)}, \ldots, P_{(10)}$, where $P_{(1)}$ is the smallest and $P_{(10)}$ is the largest.

Which of the following is/are true? Select all that all apply.

- A. If $P_{(10)} \leq 0.1$, she rejects H_0 for all data points.
- **B.** If $P_{(1)} = P_{(2)} \cdots = P_{(10)} > 0.1$, she fails to reject H_0 for all data points.
- \Box C. If $P_{(1)}, \ldots, P_{(10)} < 0.01$, she makes less rejections compared to part (c).
- **D.** If $0.01 < P_{(3)} < 0.03$, she makes more rejections compared to part (c).

Solution: The Benjamini-Hochberg procedure compares the sorted *p*-values to the line $\alpha \frac{k}{n}$. Here, $\alpha = 0.1$ and n = 10, thus $P_{(k)}$ is compared to $0.1 \frac{k}{10} = 0.01k$.

A. When $P_{(10)} \le 0.1 = 0.01 \cdot 10$, it is under the BH line. Recall we use the largest *p*-value under the line as the threshold. In this case, $P_{(10)}$ will be the threshold since it is the largest *p*-value and under the line. Therefore, we will reject the null for all data points.

B. When $P_{(1)} = P_{(2)} \cdots = P_{(10)} > 0.1$, all *p*-values are above the line, we fail to reject the null for all data points.

C. When $P_{(1)}, \ldots, P_{(10)} < 0.01$, all *p*-values are under the line, and we use $P_{(10)}$ as the threshold and make 10 rejections. In part (c), the *p*-value threshold we used is 0.1/10 = 0.01. Since all the *p*-values are less than 0.01, we will reject the null for all data points too. Therefore, we will make the same number of rejections.

D. When $0.01 < P_{(3)} < 0.03$, $P_{(3)}$ is under the BH line and will be rejected. But $P_{(3)}$ will not have been rejected under Bonferroni correction since it's > 0.01, so we will make at least one more rejection than part (c).

- (e) [2 Pts] Now instead of knowing the lifetime of all 10 records at the same time and conducting hypothesis testing, Juliet plays the records one by one until each one is worn out. She wants to make a decision immediately after seeing each lifetime. Assume she knows in advance that there are 10 records. Which of the following multiple testing strategies can she use? Select all that apply.
 - A. Naive Thresholding
 - **B.** Bonferroni Correction
 - □ C. Benjamini-Hochberg Procedure
 - **D. LORD**

4 Surgical Survival Rates [7 Pts]

A new hospital just opened up in our neighborhood and we are interested in the survival rate θ for a high-risk operation at this new hospital. The historical survival rates for this procedure at N = 10 nearby hospitals are given by

0.90, 0.99, 0.87, 0.75, 0.81, 0.90, 0.99, 0.96, 0.74, 0.93

(a) [2 Pts] We would like to convert this data from nearby hospitals into a prior density for the survival rate θ for this operation in this new hospital. Which of the following densities presents a suitable prior? Select the best option.

 \bigcirc B. Beta(1,9). \bigcirc D. Beta(10,90).

Suppose your selected prior from the previous part is Beta(a, b). Now consider the additional information: n patients are operated in this new hospital and all of them survived. Assume that the n surgeries are **independent** of each other, given the survival rate θ . Answer the following questions in terms of a, b and n.

(b) [2 Pts] What is the posterior distribution of the survival rate θ at the new hospital? If it is a known distribution, provide the name and parameters; if not, provide the density function.

Solution: The posterior corresponding to the Beta(a, b) prior and the Binomial likelihood with the data x = n is Beta(a + x, b + n - x) = Beta(a + n, b).

(c) [3 Pts] What is the probability that the next patient at this new hospital will survive the operation? State clearly the random variables you are using and the assumptions you are making to answer this question. Show all your work.

Solution: Let X_{n+1} be the binary variable which takes 1 if the n+1)th patient survives.

$$\mathbb{P}(X_{n+1} = 1 \mid X_1 = \dots = X_n = 1)$$

$$= \int_0^1 \mathbb{P}(X_{n+1} = 1 \mid \theta, X_1 = \dots = X_n = 1) f_{\theta \mid X_1 = \dots, X_n = 1}(\theta) d\theta$$

$$= \int_0^1 \mathbb{P}(X_{n+1} = 1 \mid \theta) f_{\theta \mid X_1 = \dots, X_n = 1}(\theta) d\theta$$

$$= \int_0^1 \theta f_{\theta \mid X_1 = \dots, X_n = 1}(\theta) d\theta$$

$$= \mathbb{E}[\theta \mid X_1 = \dots X_n = 1] = \text{posterior mean} = \frac{a+n}{a+b+n}$$
iid

For the above calculation, we assumed $X_1, \ldots, X_{n+1} \mid \theta \stackrel{1.1.d}{\sim} \text{Bernoulli}(\theta)$.

5 Height-based Penguin Data Correction [10 Pts]

Dr. Okoro is an biologist specializing in penguins. She maintains detailed records of the morphological features of various penguin species. However, an error led to a mix-up in her datasets for chinstrap and emperor penguins. To rectify this, she plans to use the "height" variable (stored in an array named combined_penguin_heights) to categorize the mixed records back into separate "chinstrap" and "emperor" groups. She's aware that emperor penguins, typically 120 cm tall, are taller than chinstrap penguins, which have an average height of 70 cm.

For the entire question, assume numpy as been imported as np, and PyMC as pm.

(a) [2 Pts] Consider the following PyMC model:

Draw a graphical model for model_ONE in terms of θ (theta), σ (sigma), and Y_1, Y_2, Y_3 , assuming the number of records in combined_penguin_heights is 3.

Solution: This PyMC code corresponds to the model:

$$\theta \in \text{Uniform}[-200, 200], \log \sigma \sim \text{Uniform}[-50, 50]$$

 $Y_1, \dots, Y_N \mid \theta, \sigma \stackrel{\text{i.i.d}}{\sim} N(\theta, \sigma^2)$

where N is the length of combined_penguin_heights. The graphical model is:

(b) [2 Pts] Would model_ONE help carry out Dr. Okoro's task?

- If yes, select the variable whose posterior samples returned by PyMC will help us separate the penguins and describe how you would do it.
- If not, select option E and explain why not.

Your answer should be in two sentences or less.

```
○ A.theta ○ B.log_sigma ○ C.sigma ○ D.Y • E.N/A
```

Solution: No. model_ONE fits a single normal distribution to the data. It will only tell us about the average height of a combined population of chinstrap and emperor penguins.

(c) [3 Pts] Consider the PyMC model:

Draw a graphical model for model_TWO in terms of w, thetas (θ_0, θ_1) , z_1, z_2, z_3 , and Y_1, Y_2, Y_3 , assuming the number of records in combined_penguin_heights is 3.

Solution: This PyMC code corresponds to the following model:

$$w \sim \text{Uniform}[-1, 1], \ \theta_0 \sim N(70, 20^2), \ \theta_1 \sim N(120, 20^2)$$

 $z_1, \dots, z_N \mid w \stackrel{\text{i.i.d}}{\sim} \text{Bernoulli}(w)$
 $Y_i \mid z_i = z, \theta_0, \theta_1 \sim N(\theta_z, 15^2) \text{ for } z = 0, 1 \text{ and } i = 1, \dots, n.$

The corresponding graphical model is given below:

(d) [3 Pts] Would model_TWO help carry out Dr. Okoro's task?

- If yes, select the variable whose posterior samples returned by PyMC will help us separate the penguins and describe how you would do it.
- If not, select option E and explain why not.

Your answer should be in two sentences or less.

○ A. w \bigcirc **B**.theta • C. z () D. Y ○ E. N/A

Solution: Yes, this model can solve the task. Using the posterior samples given by PyMC, we calculate the posterior mean for each variable z_i , i = 1, ..., n, and then categorize the i^{th} penguin as "chinstrap" or "emperor" depending on whether the posterior mean for z_i is smaller or larger than 0.5.

6 A Crime Dataset [8 Pts]

This problem concerns a dataset named crime on arrests from the Introductory Econometrics book by Wooldridge. This dataset contains information for n = 2725 adult men on the following variables:

- narr86 (y): Number of arrests in the year 1986 (this variable equals zero for 1970 of the 2725 men in the dataset)
- pcnv (x_1) : Proportion of previous arrests that led to a conviction
- tottime (x_2) : Total time (in months) in prison since turning 18
- inc86 (*x*₃): Legal income in 1986 (in hundreds of dollars)
- qemp86 (x_4): Number of quarters employed in 1986
- black (x_5) : Binary variable which equals 1 if the individual is black and 0 otherwise

For this entire question, assume statsmodels.api has been imported as sm.

(a) [2 Pts] We use the following code to fit a model to this dataset:

```
Y = crime['narr86']
X = crime[['pcnv', 'tottime', 'inc86',
                          'qemp86', 'black']].copy()
X = sm.add_constant(X)
model_ONE = sm.OLS(Y, X).fit()
model_ONE.summary()
```

Write down the math equation(s) for the model fitted by the above code in terms of y, x_1, \ldots, x_5 and weights β_0, \ldots, β_5 .

Solution: This code fits the linear regression model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \epsilon,$$

where ϵ is random noise.

(b) [2 Pts] The summary for model_ONE is given in Table 1.

	coef	std err	t	$\mathbf{P} > t $	[0.025	0.975]
const	0.5825	0.034	17.071	0.000	0.516	0.649
pcnv	-0.1441	0.041	-3.549	0.000	-0.224	-0.064
tottime	0.0005	0.004	0.143	0.886	-0.006	0.007
inc86	-0.0016	0.000	-4.775	0.000	-0.002	-0.001
qemp86	-0.0349	0.014	-2.456	0.014	-0.063	-0.007
black	0.2700	0.044	6.078	0.000	0.183	0.357

Table 1: model_ONE summary

In this table, the "coef" for the variable black is given as 0.27. How would you interpret this coefficient?

Solution: This means that for a black man, the average number of arrests in the year 1986 is more than 0.27 compared to a non-black man (for fixed values of the other variables).

(c) [2 Pts] We fit another model to this dataset using the code below:

```
Y = crime['narr86']
X = crime[['pcnv', 'tottime', 'inc86',
                     'qemp86', 'black']].copy()
X = sm.add_constant(X)
model_TWO = sm.GLM(Y, X, family=sm.families.Poisson()).fit()
model_TWO.summary()
```

Write down the math equation(s) for the model fitted by the above code in terms of y, x_1, \ldots, x_5 and weights β_0, \ldots, β_5 .

Solution: This model fits the Poisson Regression model:

 $Y \sim \text{Poisson}(\mu)$ and $\log \mu = \beta_0 + \beta_1 X_1 + \dots + \beta_m X_m$

(d) [2 Pts] The summary for model_TWO is given in Table 2.

	coef	std err	Z	P > z	[0.025	0.975]
const	-0.5271	0.058	-9.053	0.000	-0.641	-0.413
pcnv	-0.5000	0.084	-4.987	0.000	-0.586	-0.255
tottime	0.0004	0.006	0.074	0.941	-0.010	0.011
inc86	-0.0086	0.001	-8.288	0.000	-0.011	-0.007
qemp86	-0.0030	0.029	-0.105	0.916	-0.059	0.053
black	0.5000	0.069	7.189	0.000	0.360	0.629

Table 2: model TWO summary

Which of the following interpretations of the results is/are true? Select all that apply.

- □ A. The "coef" for the variable black is given as 0.5, this means that the average number of arrests in 1986 for a black man is roughly 45% higher than a non-black man, if we hold the values of other variables fixed.
- B. The average number of arrests for each individual goes down by roughly 5% if the probability of conviction is slightly increased by 0.1, if we hold the values of other variables fixed.
- □ C. According to the model, there is a strong positive association between an individual's the total time spent in prison and their number of arrests in 1986.
- D. The two most important factors (among pcnv, tottime, inc86, qemp86, black) that are associated with narr86 are inc86 and black.

Hint: Below are some powers of *e*:

x	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$y = e^x$	1.05	1.11	1.22	1.35	1.49	1.65	1.82	2.01	2.23	2.46	2.72

Solution: A. This means that the average number of arrests in 1986 for a black man is $(\exp(0.5) - 1) \times 100 \approx 65$ percent higher than a non-black man (for fixed values of the other variables).

B. If penv goes up by 0.1, then log(average number of arrests) goes down by $0.5 \times 0.1 = 0.05$. This means that the average number of arrests goes down by $(\exp(0.05) - 1) \times 100$ percent which is roughly 5%. Thus the average number of arrests for each individual goes down by 5% if the probability of conviction is slightly increased by 0.1.

C. The association is not strong enough, as evidenced by the 95% confidence interval.

D. The third column in Table 2 (which gives the ratio of coef to std err) can be used as a measure of variable importance. According to the numbers in this column, the two most important factors are inc86 and black.

7 Congratulations [0 Pts]

Congratulations! You have completed Midterm 1.

- Make sure that you have written your student ID number on *every other page* of the exam. You may lose points on pages where you have not done so.
- Also ensure that you have signed the Honor Code on the cover page of the exam for 1 point.
- If more than 10 minutes remain in the exam period, you may hand in your paper and leave. If ≤ 10 minutes remain, please **sit quietly** until the exam concludes.

[Optional, 0 pts] What's your favorite joke?

Midterm 1 Reference Sheet

Algorithm 1 The Benjamini-Hochberg Procedure

Inputinput FDR level α , set of n p-values P_1, \ldots, P_n Sort the p-values P_1, \ldots, P_n in nondecreasing order $P_{(1)} \leq P_{(2)} \leq \ldots \leq P_{(n)}$ Find $K = \max\{i \in \{1, \ldots, n\} : P_{(i)} \leq \frac{\alpha}{n}i\}$ Reject the null hypotheses (declare discoveries) corresponding to $P_{(1)}, \ldots, P_{(K)}$

Useful Distributions:

Distribution	Support	PDF/PMF	Mean	Variance	Mode
$X \sim \text{Poisson}(\lambda)$	$k = 0, 1, 2, \dots$	$\frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ	$\lfloor \lambda \rfloor$
$X \sim \text{Beta}(\alpha, \beta)$	$0 \le x \le 1$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha}{\alpha+\beta}\frac{\beta}{\alpha+\beta}\frac{1}{\alpha+\beta+1}$	$\frac{\alpha - 1}{\alpha + \beta - 2}$
$X \sim \operatorname{Gamma}(\alpha,\beta)$	$x \ge 0$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\frac{\alpha-1}{\beta}$
$X \sim \mathcal{N}(\mu, \sigma^2)$	$x \in \mathbb{R}$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	μ	σ^2	μ
$X \sim \operatorname{Exponential}(\lambda)$	$x \ge 0$	$\lambda \exp(-\lambda x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	0

Conjugate Priors: For observations x_i , i = 1, ..., n:

Likelihood	Prior	Posterior
$x_i \theta \sim \text{Bernoulli}(\theta)$	$\theta \sim \text{Beta}(\alpha, \beta)$	$\theta x_{1:n} \sim \text{Beta}\left(\alpha + \sum_{i} x_{i}, \beta + \sum_{i} (1 - x_{i})\right)$
$x_i \mu \sim \mathcal{N}(\mu, \sigma^2)$	$\mu \sim \mathcal{N}(\mu_0, 1)$	$\mu x_{1:n} \sim \mathcal{N}\left(\frac{\sigma^2}{2} \left(\mu_0 + \frac{1}{2} \sum_i x_i\right), \frac{\sigma^2}{2}\right)$
		$(\sigma^2 + n (r^2 + n (r^2 + \sigma^2 - 2n r^2)), \sigma^2 + n)$
$x_i \lambda \sim \text{Exponential}(\lambda)$	$\lambda \sim \text{Gamma}(\alpha, \beta)$	$\lambda x_{1:n} \sim \text{Gamma}\left(\alpha + n, \beta + \sum_{i} x_{i}\right)$

Generalized Linear Models

Regression	Inverse link function	Likelihood
Linear	identity	Gaussian
Poisson	exponential	Poisson

Some powers of *e*:

x	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$y = e^x$	1.05	1.11	1.22	1.35	1.49	1.65	1.82	2.01	2.23	2.46	2.72