Graphical Models

Data 102 Fall 2022 Lecture 7

Weekly Overview

• So far:

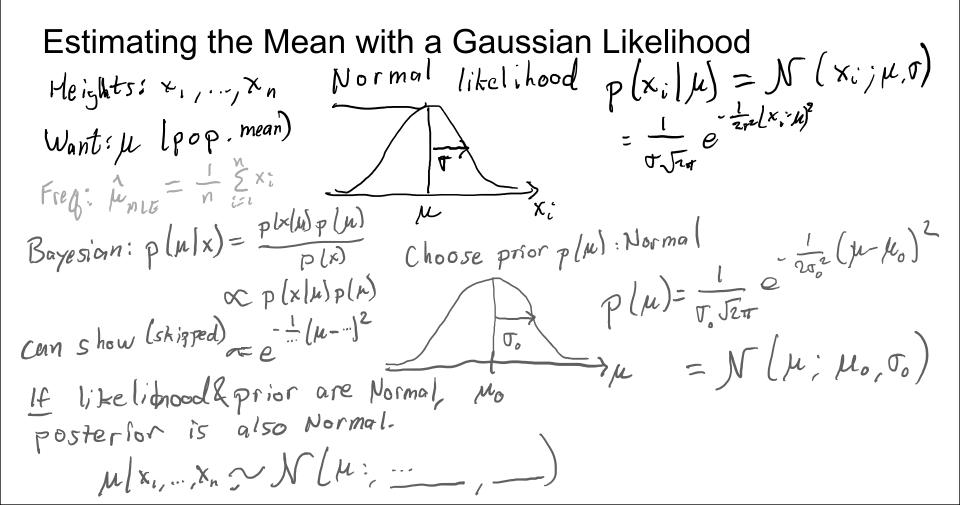
• Today:

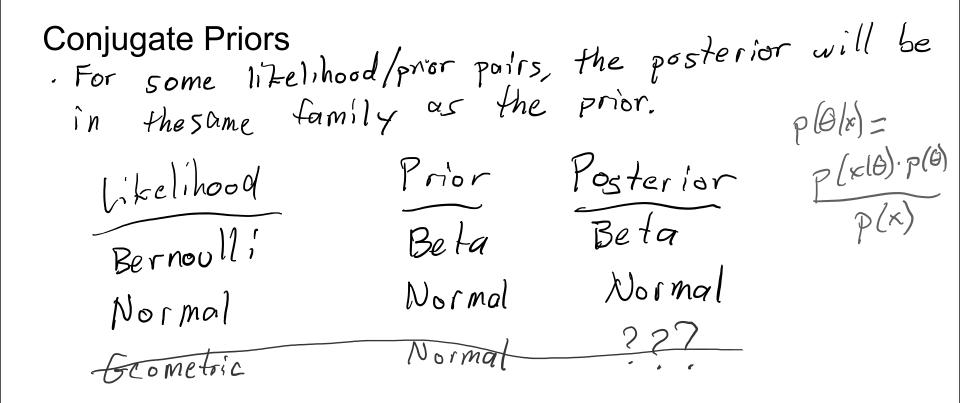
- Making decisions with feedback (online decision-making)
- Hypothesis testing with a known alternative (Neyman-Pearson)
- Connection to binary classification

• Next time: connecting decision-making and frequentist/Bayesian views

Recap: Statistical modeling

- Goal: find unknown parameter θ using observed data x
- How:
 - Define a probability model for the data/parameters, then use it to estimate θ from x
- Likelihood function p(x|θ): captures how likely our data are for each parameter
 - Used in both frequentist and Bayesian models
- Frequentist modeling
 - MLE (Maximum Likelihood Estimate): value of θ that makes $p(x|\theta)$ as large as possible
- Bayesian modeling
 - Define a prior $p(\theta)$: what we believe about the parameter before we see any data
 - \circ Compute posterior p($\theta|x)$: what we believe about the parameter after observing data
 - To get a single estimate for θ from the posterior, we can use the MAP or LMSE estimates
 - MAP: value of θ that makes $p(\theta|x)$ as large as possible
 - *MMSE*: $E_{\theta|x}[\theta]$ (expectation of θ according to posterior $p(\theta|x)$)





Assumptions · Planets are cid (given grp mens) Exoplanet Model · Jo, J, fixed · Each group's radii nor mally det. Mave: X.,..., Xn (radii of exoplanets) Prior mouns come from same dist. Lychoose Op large z_i is 20 o.w. Warts · Mean raulius for each "group" · Which planets are in each grp? · fixed Zi : is planet i habitable? $Z_{i} \stackrel{\text{id}}{\xrightarrow{}} Bernoulli(\pi)$ $\mu_{0} \sim \mathcal{N}(\mu_{p}, \tau_{p})$ $\mu_{1} \sim \mathcal{N}(\mu_{p}, \tau_{p})$ $\mu_{1} \sim \mathcal{N}(\mu_{p}, \tau_{p})$ Mo , To : mean /SD for "habitable" Mo , To : " for "gas giant" Posterior_ $\chi_{i}|_{z_{i},\mu_{o},\mu_{i}} \sim \mathcal{N}(\mu_{z_{i}}, \tau_{z_{i}})$ P(Z.,...,Zn,Mo, M, (X.,...,Xn) Glikelihood $\Theta = [z_1, \dots, z_n, \mu_0, \mu)$

Exoplanet Model: A Visual Representation Π $z_i \sim \text{Bernoulli}(\pi)$ $\mu_k \sim \mathcal{N}(\mu_p, \sigma_p) \; k = 0, k = 1$ 2n $z_1^{'}$ Zi $x_i | z_i, \mu_0, \mu_1 \sim \mathcal{N}(\mu_{z_i}, \sigma)$ Graphical Models x_n . Circles for RUS . Dots for params μ_l μo J.J. . Arrows indicate dependence

MP, Jp