
DS102 Fall 2019 - Midterm

First and Last Name:

Student ID:

• Please write your first and last name as well as your student ID at the top of the first
sheet. Also write your student ID on the bottom of each page.

• You have 75 minutes: there are five questions on this exam, with each question being
worth an equal amount of points.

• Make sure you have 14 pages. If you do not, let us know immediately.

• Question 1 (true/false) is required.

• For the remaining four questions (Questions 2-5), we will grade all of them and take
the top three among these four. You may attempt all questions or skip one depending
on time.

• Even if you are unsure about your answer it is better to write down as many details
as possible so we can give you partial credit.

• You may, without proof, use theorems and facts that were given in the discussions,
lectures or notes.

• We will only grade work on the front of each page unless you indicate otherwise. The
exam is printed 1-sided so that you can use the back sides for scratch paper. If you do
run out of space on the front, continue on the back side of the page and make a note
at the bottom of this cover sheet to let us know.

• Make sure to write clearly. We can’t give you credit if we can’t read your solutions.



1. (10 points) For each of the following, answer true or false. Circle T for true and F
for false. You don’t need to justify your answer.

(a) (1 point) ( T / F ) It is possible to control FDR over an infinite number of
tests while always having nonzero probability of declaring a discovery on any given
hypothesis.

(b) (1 point) ( T / F ) The following function is linear in x:

f(x, θ) = 1 + x+ sin(θx) + θ2x.

(c) (1 point) ( T / F ) Adding a regularization term to logistic regression prevents
weights from diverging on linearly separable data.

(d) (1 point) ( T / F ) An equal tails credible interval and an interval of highest
posterior density are equivalent if the prior distribution is symmetric.

(e) (1 point) ( T / F ) If we were to repeatedly compute a 90% credible interval
from fresh samples, the fraction of calculated intervals that encompass the true
parameter would be approximately 90%.

(f) (1 point) ( T / F ) Rejection sampling is in general preferable to importance
sampling, as the rejection sampling estimate has lower variance.

(g) (1 point) ( T / F ) Gibbs sampling updates one parameter at a time.

(h) (1 point) ( T / F ) False discovery proportion can be thought of as a conditional
probability that the reality is null (0), given that we made a discovery (1).

(i) (1 point) ( T / F ) The Hoeffding bound can be used for any random variable
with finite variance.

(j) (1 point) ( T / F ) The Chebyshev bound allows us to construct confidence
intervals for the mean of a bounded random variable.
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2. (10 points) Suppose you observe two independent Gaussian samples, Z1 ∼ N(µ1, 1)
and Z2 ∼ N(µ2, 1). You want to test two hypotheses, one for each sample: the null
hypotheses are µ1 = 0 and µ2 = 0, respectively. You compute two p-values as Pi =
Φ(−Zi), i ∈ {1, 2}, where Φ is the standard Gaussian CDF.

Suppose that the ground truth is null, i.e. Z1, Z2 ∼ N(0, 1). We consider some α ∈ (0, 1).

(a) (5 points) Suppose that you apply the simple decision rule of rejecting when Pi ≤ α,
i ∈ {1, 2}. What is the false discovery rate (FDR) of this rule applied to P1, P2? Is
it less than or equal to α?
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(b) (5 points) Now suppose that you reject when Pi ≤ α
2
, i ∈ {1, 2}. What is the false

discovery rate (FDR) of this rule applied to P1, P2? Is it less than or equal to α?
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3. (10 points) In this question we analyze the properties of the Benjamini-Hochberg (BH)
procedure. Recall the steps of the procedure:

Algorithm 1 The Benjamini-Hochberg Procedure

input: FDR level α, set of n p-values P1, . . . , Pn
Sort the p-values P1, . . . , Pn in non-decreasing order P(1) ≤ P(2) ≤ · · · ≤ P(n)

Find K = max{i ∈ {1, . . . , n} : P(i) ≤ α
n
i}

Reject the null hypotheses (declare discoveries) corresponding to P(1), . . . , P(K)

(a) (3 points) Suppose P1 = P2 = · · · = Pn = α, and we run BH under level α on these
p-values. How many discoveries does BH make? Explain.
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(b) (3 points) Suppose P1 = P2 = · · · = Pn−1 = α, Pn = α + 0.001α, and we run BH
under level α on these p-values. How many discoveries does BH make? Explain.
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(c) (4 points) Suppose we run BH on {P1, . . . , Pn}, and we make R < n discoveries.
Now suppose we add an extra p-value equal to 0 to this set. Now we run BH on
{P1, . . . , Pn, 0} and get a new number of rejections R′. Which of the following are
possible: R′ > R, R′ = R, R′ < R? If multiple are possible, list all that are possible.
Explain why.
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4. (10 points) Consider the Gaussian mixture model where your model asserts that the
observed data is drawn from the following procedure:
For i = 1, ..., n

xi ∼ Bernoulli(θ),

yi ∼ N (µxi , σ
2
xi

),

where (xi, yi) pairs are observed, but the proportion θ, means µ0, µ1 and standard devi-
ations σ0, σ1 are fixed and unknown. Recall that

N (y;µ, σ2) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
(a) (3 points) Express the likelihood function p(x, y; θ, µ0, µ1, σ0, σ1) in terms of the

parameters and the data x = (x1, ..., xn), y = (y1, ..., yn).
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(b) (2 points) Write an expression for the log likelihood,
`(θ, µ0, µ1, σ0, σ1;x, y) = log p(x, y; θ, µ0, µ1, σ0, σ1).
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(c) (2 points) Derive the maximum likelihood estimates (MLE) of θ (θ̂MLE) as a func-
tion of the observed data x1, ..., xn and y1, ..., yn. hint: you may want to frame your
estimate for θ̂MLE in terms of the quantity C =

∑n
i=1 xi.
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(d) (3 points) Derive the estimates µ̂0MLE and µ̂1MLE as a function of the observed
data x1, ..., xn and y1, ..., yn.
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5. (10 points) Here, we observe data points yi as draws from the following procedure with
hidden variables xi, which we don’t observe:

xi =

{
1 with probability 1/2

0 with probability 1/2

If xi = 1, then yi ∼ N (1, σ2). Otherwise, xi = 0, and yi ∼ N (−1, σ2). Note these
distributions share the same standard deviation σ.

We don’t actually observe the variables xi, but we’d like to infer them from our obser-
vations of yi.

(a) (4 points) Show that for a given data point i,

p(xi = 1|yi) =
1

1 + e−f(yi)

for some function f(yi). What is this function f(yi)?
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(b) (4 points) Suppose we want to declare a decision rule to classify point i as coming
from either N (µ1 = 1, σ2) or N (µ0 = −1, σ2). We will do so by declaring:

x̂i = arg max
x∈{0,1}

p(xi = x|yi)

State this decision rule in terms of the function f(y) from part (a).
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(c) (2 points) Given the form of f(y) you solved for above, describe this decision rule
in one sentence. (If you didn’t get a solution to the previous part, you can take a
guess given the geometry of the problem.)
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